Optimal. Leaf size=21 \[ -1-4 x+\frac {1}{15} x \left (-2+\log \left (3-\log \left (x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {188-62 \log \left (x^2\right )+\left (-3+\log \left (x^2\right )\right ) \log \left (3-\log \left (x^2\right )\right )}{-45+15 \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-188+62 \log \left (x^2\right )-\left (-3+\log \left (x^2\right )\right ) \log \left (3-\log \left (x^2\right )\right )}{15 \left (3-\log \left (x^2\right )\right )} \, dx\\ &=\frac {1}{15} \int \frac {-188+62 \log \left (x^2\right )-\left (-3+\log \left (x^2\right )\right ) \log \left (3-\log \left (x^2\right )\right )}{3-\log \left (x^2\right )} \, dx\\ &=\frac {1}{15} \int \left (-\frac {2 \left (-94+31 \log \left (x^2\right )\right )}{-3+\log \left (x^2\right )}+\log \left (3-\log \left (x^2\right )\right )\right ) \, dx\\ &=\frac {1}{15} \int \log \left (3-\log \left (x^2\right )\right ) \, dx-\frac {2}{15} \int \frac {-94+31 \log \left (x^2\right )}{-3+\log \left (x^2\right )} \, dx\\ &=\frac {1}{15} \int \log \left (3-\log \left (x^2\right )\right ) \, dx-\frac {2}{15} \int \left (31-\frac {1}{-3+\log \left (x^2\right )}\right ) \, dx\\ &=-\frac {62 x}{15}+\frac {1}{15} \int \log \left (3-\log \left (x^2\right )\right ) \, dx+\frac {2}{15} \int \frac {1}{-3+\log \left (x^2\right )} \, dx\\ &=-\frac {62 x}{15}+\frac {1}{15} \int \log \left (3-\log \left (x^2\right )\right ) \, dx+\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{-3+x} \, dx,x,\log \left (x^2\right )\right )}{15 \sqrt {x^2}}\\ &=-\frac {62 x}{15}+\frac {e^{3/2} x \text {Ei}\left (\frac {1}{2} \left (-3+\log \left (x^2\right )\right )\right )}{15 \sqrt {x^2}}+\frac {1}{15} \int \log \left (3-\log \left (x^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 19, normalized size = 0.90 \begin {gather*} \frac {1}{15} \left (-62 x+x \log \left (3-\log \left (x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 16, normalized size = 0.76 \begin {gather*} \frac {1}{15} \, x \log \left (-\log \left (x^{2}\right ) + 3\right ) - \frac {62}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 16, normalized size = 0.76 \begin {gather*} \frac {1}{15} \, x \log \left (-\log \left (x^{2}\right ) + 3\right ) - \frac {62}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.81
method | result | size |
norman | \(-\frac {62 x}{15}+\frac {x \ln \left (3-\ln \left (x^{2}\right )\right )}{15}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 0.67 \begin {gather*} \frac {1}{15} \, x \log \left (-2 \, \log \relax (x) + 3\right ) - \frac {62}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 14, normalized size = 0.67 \begin {gather*} \frac {x\,\left (\ln \left (3-\ln \left (x^2\right )\right )-62\right )}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 15, normalized size = 0.71 \begin {gather*} \frac {x \log {\left (3 - \log {\left (x^{2} \right )} \right )}}{15} - \frac {62 x}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________