Optimal. Leaf size=19 \[ \frac {\frac {1}{3}+x}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-162-486 x-x^3-3 x^4+\left (-729 x+9 x^4+\left (-243 x+3 x^4\right ) \log \left (\frac {-81+x^3}{x^2}\right )\right ) \log \left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )}{\left (-729 x+9 x^4+\left (-243 x+3 x^4\right ) \log \left (\frac {-81+x^3}{x^2}\right )\right ) \log ^2\left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {162+486 x+x^3+3 x^4-\left (-729 x+9 x^4+\left (-243 x+3 x^4\right ) \log \left (\frac {-81+x^3}{x^2}\right )\right ) \log \left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )}{3 x \left (81-x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {162+486 x+x^3+3 x^4-\left (-729 x+9 x^4+\left (-243 x+3 x^4\right ) \log \left (\frac {-81+x^3}{x^2}\right )\right ) \log \left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )}{x \left (81-x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (\frac {-81+x^3}{x^2}\right )\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {-162-486 x-x^3-3 x^4}{x \left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}+\frac {3}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-162-486 x-x^3-3 x^4}{x \left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {3}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}+\frac {2}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}-\frac {3 \left (243+x^2\right )}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}\right ) \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {2}{3} \int \frac {1}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \frac {1}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \frac {243+x^2}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {2}{3} \int \frac {1}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \left (\frac {243}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}+\frac {x^2}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}\right ) \, dx-\int \frac {1}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {2}{3} \int \frac {1}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-243 \int \frac {1}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \frac {1}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \frac {x^2}{\left (-81+x^3\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {2}{3} \int \frac {1}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-243 \int \left (-\frac {1}{27\ 3^{2/3} \left (3 \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}-\frac {1}{27\ 3^{2/3} \left (3 \sqrt [3]{3}+\sqrt [3]{-1} x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}-\frac {1}{27\ 3^{2/3} \left (3 \sqrt [3]{3}-(-1)^{2/3} x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}\right ) \, dx-\int \left (-\frac {1}{3 \left (-3 \sqrt [3]{-3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}-\frac {1}{3 \left (3 \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}-\frac {1}{3 \left (3 (-1)^{2/3} \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )}\right ) \, dx-\int \frac {1}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {1}{\left (-3 \sqrt [3]{-3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\frac {1}{3} \int \frac {1}{\left (3 \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\frac {1}{3} \int \frac {1}{\left (3 (-1)^{2/3} \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\frac {2}{3} \int \frac {1}{x \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\left (3 \sqrt [3]{3}\right ) \int \frac {1}{\left (3 \sqrt [3]{3}-x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\left (3 \sqrt [3]{3}\right ) \int \frac {1}{\left (3 \sqrt [3]{3}+\sqrt [3]{-1} x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\left (3 \sqrt [3]{3}\right ) \int \frac {1}{\left (3 \sqrt [3]{3}-(-1)^{2/3} x\right ) \left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx-\int \frac {1}{\left (3+\log \left (-\frac {81}{x^2}+x\right )\right ) \log ^2\left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx+\int \frac {1}{\log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 22, normalized size = 1.16 \begin {gather*} -\frac {-1-3 x}{3 \log \left (3+\log \left (-\frac {81}{x^2}+x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 22, normalized size = 1.16 \begin {gather*} \frac {3 \, x + 1}{3 \, \log \left (\log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.74, size = 87, normalized size = 4.58 \begin {gather*} \frac {3 \, x \log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 9 \, x + \log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 3}{3 \, {\left (\log \left (x^{3} - 81\right ) \log \left (\log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 3\right ) - \log \left (x^{2}\right ) \log \left (\log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 3\right ) + 3 \, \log \left (\log \left (\frac {x^{3} - 81}{x^{2}}\right ) + 3\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (3 x^{4}-243 x \right ) \ln \left (\frac {x^{3}-81}{x^{2}}\right )+9 x^{4}-729 x \right ) \ln \left (\ln \left (\frac {x^{3}-81}{x^{2}}\right )+3\right )-3 x^{4}-x^{3}-486 x -162}{\left (\left (3 x^{4}-243 x \right ) \ln \left (\frac {x^{3}-81}{x^{2}}\right )+9 x^{4}-729 x \right ) \ln \left (\ln \left (\frac {x^{3}-81}{x^{2}}\right )+3\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 22, normalized size = 1.16 \begin {gather*} \frac {3 \, x + 1}{3 \, \log \left (\log \left (x^{3} - 81\right ) - 2 \, \log \relax (x) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.56, size = 101, normalized size = 5.32 \begin {gather*} 3\,x-\frac {729\,x}{x^3+162}+\frac {x-\frac {x\,\ln \left (\ln \left (\frac {x^3-81}{x^2}\right )+3\right )\,\left (x^3-81\right )\,\left (\ln \left (\frac {x^3-81}{x^2}\right )+3\right )}{x^3+162}+\frac {1}{3}}{\ln \left (\ln \left (\frac {x^3-81}{x^2}\right )+3\right )}-\frac {\ln \left (\frac {x^3-81}{x^2}\right )\,\left (81\,x-x^4\right )}{x^3+162} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 19, normalized size = 1.00 \begin {gather*} \frac {3 x + 1}{3 \log {\left (\log {\left (\frac {x^{3} - 81}{x^{2}} \right )} + 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________