Optimal. Leaf size=29 \[ -x-\log (x)+\frac {2 x+\log (x)}{4-e^{2+2 x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12+e^{4+4 x} (-1-x)-15 x-9 x^2-x^3+e^{2+2 x} \left (7+8 x+6 x^2\right )+\left (-x+2 e^{2+2 x} x\right ) \log (x)}{16 x+e^{4+4 x} x+8 x^2+x^3+e^{2+2 x} \left (-8 x-2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12+e^{4+4 x} (-1-x)-15 x-9 x^2-x^3+e^{2+2 x} \left (7+8 x+6 x^2\right )+\left (-x+2 e^{2+2 x} x\right ) \log (x)}{x \left (4-e^{2+2 x}+x\right )^2} \, dx\\ &=\int \left (\frac {-1-x}{x}+\frac {(7+2 x) (2 x+\log (x))}{\left (-4+e^{2+2 x}-x\right )^2}-\frac {-1-2 x+4 x^2+2 x \log (x)}{x \left (4-e^{2+2 x}+x\right )}\right ) \, dx\\ &=\int \frac {-1-x}{x} \, dx+\int \frac {(7+2 x) (2 x+\log (x))}{\left (-4+e^{2+2 x}-x\right )^2} \, dx-\int \frac {-1-2 x+4 x^2+2 x \log (x)}{x \left (4-e^{2+2 x}+x\right )} \, dx\\ &=\int \left (-1-\frac {1}{x}\right ) \, dx-\int \left (\frac {2}{-4+e^{2+2 x}-x}-\frac {1}{x \left (4-e^{2+2 x}+x\right )}+\frac {4 x}{4-e^{2+2 x}+x}-\frac {2 \log (x)}{-4+e^{2+2 x}-x}\right ) \, dx+\int \left (\frac {7 (2 x+\log (x))}{\left (-4+e^{2+2 x}-x\right )^2}+\frac {2 x (2 x+\log (x))}{\left (-4+e^{2+2 x}-x\right )^2}\right ) \, dx\\ &=-x-\log (x)-2 \int \frac {1}{-4+e^{2+2 x}-x} \, dx+2 \int \frac {\log (x)}{-4+e^{2+2 x}-x} \, dx+2 \int \frac {x (2 x+\log (x))}{\left (-4+e^{2+2 x}-x\right )^2} \, dx-4 \int \frac {x}{4-e^{2+2 x}+x} \, dx+7 \int \frac {2 x+\log (x)}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+\int \frac {1}{x \left (4-e^{2+2 x}+x\right )} \, dx\\ &=-x-\log (x)-2 \int \frac {1}{-4+e^{2+2 x}-x} \, dx+2 \int \left (\frac {2 x^2}{\left (-4+e^{2+2 x}-x\right )^2}+\frac {x \log (x)}{\left (-4+e^{2+2 x}-x\right )^2}\right ) \, dx-2 \int \frac {\int \frac {1}{-4+e^{2+2 x}-x} \, dx}{x} \, dx-4 \int \frac {x}{4-e^{2+2 x}+x} \, dx+7 \int \left (\frac {2 x}{\left (-4+e^{2+2 x}-x\right )^2}+\frac {\log (x)}{\left (-4+e^{2+2 x}-x\right )^2}\right ) \, dx+(2 \log (x)) \int \frac {1}{-4+e^{2+2 x}-x} \, dx+\int \frac {1}{x \left (4-e^{2+2 x}+x\right )} \, dx\\ &=-x-\log (x)-2 \int \frac {1}{-4+e^{2+2 x}-x} \, dx+2 \int \frac {x \log (x)}{\left (-4+e^{2+2 x}-x\right )^2} \, dx-2 \int \frac {\int \frac {1}{-4+e^{2+2 x}-x} \, dx}{x} \, dx+4 \int \frac {x^2}{\left (-4+e^{2+2 x}-x\right )^2} \, dx-4 \int \frac {x}{4-e^{2+2 x}+x} \, dx+7 \int \frac {\log (x)}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+14 \int \frac {x}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+(2 \log (x)) \int \frac {1}{-4+e^{2+2 x}-x} \, dx+\int \frac {1}{x \left (4-e^{2+2 x}+x\right )} \, dx\\ &=-x-\log (x)-2 \int \frac {1}{-4+e^{2+2 x}-x} \, dx-2 \int \frac {\int \frac {1}{-4+e^{2+2 x}-x} \, dx}{x} \, dx-2 \int \frac {\int \frac {x}{\left (4-e^{2+2 x}+x\right )^2} \, dx}{x} \, dx+4 \int \frac {x^2}{\left (-4+e^{2+2 x}-x\right )^2} \, dx-4 \int \frac {x}{4-e^{2+2 x}+x} \, dx-7 \int \frac {\int \frac {1}{\left (4-e^{2+2 x}+x\right )^2} \, dx}{x} \, dx+14 \int \frac {x}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+(2 \log (x)) \int \frac {1}{-4+e^{2+2 x}-x} \, dx+(2 \log (x)) \int \frac {x}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+(7 \log (x)) \int \frac {1}{\left (-4+e^{2+2 x}-x\right )^2} \, dx+\int \frac {1}{x \left (4-e^{2+2 x}+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 43, normalized size = 1.48 \begin {gather*} -x-\frac {2 x}{-4+e^{2+2 x}-x}-\log (x)-\frac {\log (x)}{-4+e^{2+2 x}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 45, normalized size = 1.55 \begin {gather*} -\frac {x^{2} - x e^{\left (2 \, x + 2\right )} + {\left (x - e^{\left (2 \, x + 2\right )} + 3\right )} \log \relax (x) + 2 \, x}{x - e^{\left (2 \, x + 2\right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.83, size = 49, normalized size = 1.69 \begin {gather*} -\frac {x^{2} - x e^{\left (2 \, x + 2\right )} + x \log \relax (x) - e^{\left (2 \, x + 2\right )} \log \relax (x) + 2 \, x + 3 \, \log \relax (x)}{x - e^{\left (2 \, x + 2\right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 69, normalized size = 2.38
method | result | size |
risch | \(-\frac {\ln \relax (x )}{{\mathrm e}^{2 x +2}-x -4}-\frac {\ln \relax (x ) {\mathrm e}^{2 x +2}+x \,{\mathrm e}^{2 x +2}-x \ln \relax (x )-x^{2}-4 \ln \relax (x )-2 x}{{\mathrm e}^{2 x +2}-x -4}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 40, normalized size = 1.38 \begin {gather*} -\frac {x^{2} - x e^{\left (2 \, x + 2\right )} + 2 \, x - \log \relax (x)}{x - e^{\left (2 \, x + 2\right )} + 4} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.55, size = 61, normalized size = 2.10 \begin {gather*} \frac {\ln \relax (x)}{x-{\mathrm {e}}^{2\,x+2}+4}-\ln \relax (x)-x-\frac {2\,\left (2\,x^2+7\,x\right )}{\left ({\mathrm {e}}^{2\,x}-{\mathrm {e}}^{-2}\,\left (x+4\right )\right )\,\left (7\,{\mathrm {e}}^2+2\,x\,{\mathrm {e}}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.83 \begin {gather*} - x + \frac {- 2 x - \log {\relax (x )}}{- x + e^{2} e^{2 x} - 4} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________