Optimal. Leaf size=24 \[ \log \left (\log \left (\frac {1}{\frac {1}{5}+x+e^{\frac {1}{6 (5-x)}} x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 1, number of rules used = 1, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6684} \begin {gather*} \log \left (\log \left (\frac {5}{5 e^{\frac {1}{6 (5-x)}} x+5 x+1}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (\log \left (\frac {5}{1+5 x+5 e^{\frac {1}{6 (5-x)}} x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 22, normalized size = 0.92 \begin {gather*} \log \left (\log \left (\frac {5}{1+5 \left (1+e^{\frac {1}{30-6 x}}\right ) x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 22, normalized size = 0.92 \begin {gather*} \log \left (\log \left (\frac {5}{5 \, x e^{\left (-\frac {1}{6 \, {\left (x - 5\right )}}\right )} + 5 \, x + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 25, normalized size = 1.04 \begin {gather*} \log \left (\log \left (\frac {5}{5 \, x e^{\left (-\frac {x}{30 \, {\left (x - 5\right )}} + \frac {1}{30}\right )} + 5 \, x + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 17, normalized size = 0.71
method | result | size |
risch | \(\ln \left (\ln \left (\frac {1}{5}+x \left ({\mathrm e}^{-\frac {1}{6 \left (x -5\right )}}+1\right )\right )\right )\) | \(17\) |
norman | \(\ln \left (\ln \left (\frac {5}{5 x \,{\mathrm e}^{-\frac {1}{6 x -30}}+1+5 x}\right )\right )\) | \(25\) |
default | \(\ln \left (-\ln \left (\frac {5}{5 x \,{\mathrm e}^{-\frac {1}{6 x -30}}+1+5 x}\right )\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 43, normalized size = 1.79 \begin {gather*} \log \left (-\frac {6 \, x \log \relax (5) - 6 \, {\left (x - 5\right )} \log \left ({\left (5 \, x + 1\right )} e^{\left (\frac {1}{6 \, {\left (x - 5\right )}}\right )} + 5 \, x\right ) - 30 \, \log \relax (5) + 1}{6 \, {\left (x - 5\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.81, size = 24, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (\frac {5}{5\,x+5\,x\,{\mathrm {e}}^{-\frac {1}{6\,x-30}}+1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.15, size = 20, normalized size = 0.83 \begin {gather*} \log {\left (\log {\left (\frac {5}{5 x + 5 x e^{- \frac {1}{6 x - 30}} + 1} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________