Optimal. Leaf size=22 \[ -6+e^x \left (-1+e^{5+x}-\left (x+x^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 37, normalized size of antiderivative = 1.68, number of steps used = 19, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {2194, 2196, 2176} \begin {gather*} -e^x x^4-2 e^x x^3-e^x x^2-e^x+e^{2 x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int e^{5+2 x} \, dx+\int e^x \left (-1-2 x-7 x^2-6 x^3-x^4\right ) \, dx\\ &=e^{5+2 x}+\int \left (-e^x-2 e^x x-7 e^x x^2-6 e^x x^3-e^x x^4\right ) \, dx\\ &=e^{5+2 x}-2 \int e^x x \, dx-6 \int e^x x^3 \, dx-7 \int e^x x^2 \, dx-\int e^x \, dx-\int e^x x^4 \, dx\\ &=-e^x+e^{5+2 x}-2 e^x x-7 e^x x^2-6 e^x x^3-e^x x^4+2 \int e^x \, dx+4 \int e^x x^3 \, dx+14 \int e^x x \, dx+18 \int e^x x^2 \, dx\\ &=e^x+e^{5+2 x}+12 e^x x+11 e^x x^2-2 e^x x^3-e^x x^4-12 \int e^x x^2 \, dx-14 \int e^x \, dx-36 \int e^x x \, dx\\ &=-13 e^x+e^{5+2 x}-24 e^x x-e^x x^2-2 e^x x^3-e^x x^4+24 \int e^x x \, dx+36 \int e^x \, dx\\ &=23 e^x+e^{5+2 x}-e^x x^2-2 e^x x^3-e^x x^4-24 \int e^x \, dx\\ &=-e^x+e^{5+2 x}-e^x x^2-2 e^x x^3-e^x x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 26, normalized size = 1.18 \begin {gather*} e^x \left (-1+e^{5+x}-x^2-2 x^3-x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 24, normalized size = 1.09 \begin {gather*} -{\left (x^{4} + 2 \, x^{3} + x^{2} + 1\right )} e^{x} + e^{\left (2 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 1.09 \begin {gather*} -{\left (x^{4} + 2 \, x^{3} + x^{2} + 1\right )} e^{x} + e^{\left (2 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.27
method | result | size |
risch | \({\mathrm e}^{5+2 x}+\left (-x^{4}-2 x^{3}-x^{2}-1\right ) {\mathrm e}^{x}\) | \(28\) |
default | \(-{\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x^{3}-{\mathrm e}^{x} x^{4}-{\mathrm e}^{x}+{\mathrm e}^{5} {\mathrm e}^{2 x}\) | \(34\) |
norman | \(-{\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x^{3}-{\mathrm e}^{x} x^{4}-{\mathrm e}^{x}+{\mathrm e}^{5} {\mathrm e}^{2 x}\) | \(34\) |
meijerg | \(-{\mathrm e}^{5} \left (1-{\mathrm e}^{2 x}\right )-\frac {\left (5 x^{4}-20 x^{3}+60 x^{2}-120 x +120\right ) {\mathrm e}^{x}}{5}+\frac {3 \left (-4 x^{3}+12 x^{2}-24 x +24\right ) {\mathrm e}^{x}}{2}-\frac {7 \left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}+\left (-2 x +2\right ) {\mathrm e}^{x}+1-{\mathrm e}^{x}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 69, normalized size = 3.14 \begin {gather*} -{\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x} - 6 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} - 7 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 2 \, {\left (x - 1\right )} e^{x} + e^{\left (2 \, x + 5\right )} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 23, normalized size = 1.05 \begin {gather*} -{\mathrm {e}}^x\,\left (x^2-{\mathrm {e}}^{x+5}+2\,x^3+x^4+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 26, normalized size = 1.18 \begin {gather*} \left (- x^{4} - 2 x^{3} - x^{2} - 1\right ) e^{x} + e^{5} e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________