Optimal. Leaf size=17 \[ 7-\frac {x^2}{\log \left (-2+e^x+\log (3)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x^2+\left (4 x-2 e^x x-2 x \log (3)\right ) \log \left (-2+e^x+\log (3)\right )}{\left (-2+e^x+\log (3)\right ) \log ^2\left (-2+e^x+\log (3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x x^2+\left (4 x-2 e^x x-2 x \log (3)\right ) \log \left (-2+e^x+\log (3)\right )}{\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right ) \log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx\\ &=\int \frac {x \left (\frac {e^x x}{-2+e^x+\log (3)}-2 \log \left (-2+e^x+\log (3)\right )\right )}{\log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx\\ &=\int \left (\frac {x^2 (2-\log (3))}{\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right ) \log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )}+\frac {x \left (x-2 \log \left (-2+e^x+\log (3)\right )\right )}{\log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )}\right ) \, dx\\ &=(2-\log (3)) \int \frac {x^2}{\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right ) \log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx+\int \frac {x \left (x-2 \log \left (-2+e^x+\log (3)\right )\right )}{\log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx\\ &=(2-\log (3)) \int \frac {x^2}{\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right ) \log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx+\int \left (\frac {x^2}{\log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )}-\frac {2 x}{\log \left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\log \left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx\right )+(2-\log (3)) \int \frac {x^2}{\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right ) \log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx+\int \frac {x^2}{\log ^2\left (e^x-2 \left (1-\frac {\log (3)}{2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 15, normalized size = 0.88 \begin {gather*} -\frac {x^2}{\log \left (-2+e^x+\log (3)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 14, normalized size = 0.82 \begin {gather*} -\frac {x^{2}}{\log \left (e^{x} + \log \relax (3) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 14, normalized size = 0.82 \begin {gather*} -\frac {x^{2}}{\log \left (e^{x} + \log \relax (3) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 15, normalized size = 0.88
method | result | size |
norman | \(-\frac {x^{2}}{\ln \left ({\mathrm e}^{x}+\ln \relax (3)-2\right )}\) | \(15\) |
risch | \(-\frac {x^{2}}{\ln \left ({\mathrm e}^{x}+\ln \relax (3)-2\right )}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 14, normalized size = 0.82 \begin {gather*} -\frac {x^{2}}{\log \left (e^{x} + \log \relax (3) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 14, normalized size = 0.82 \begin {gather*} -\frac {x^2}{\ln \left (\ln \relax (3)+{\mathrm {e}}^x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.82 \begin {gather*} - \frac {x^{2}}{\log {\left (e^{x} - 2 + \log {\relax (3 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________