Optimal. Leaf size=24 \[ 5 e^{\frac {3 e^{x^2}}{\log ((4-x) \log (x))}} \log (4) \]
________________________________________________________________________________________
Rubi [F] time = 9.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3 e^{x^2}}{\log ((4-x) \log (x))}} \left (e^{x^2} (60-15 x) \log (4)-15 e^{x^2} x \log (4) \log (x)+e^{x^2} \left (-120 x^2+30 x^3\right ) \log (4) \log (x) \log ((4-x) \log (x))\right )}{\left (-4 x+x^2\right ) \log (x) \log ^2((4-x) \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3 e^{x^2}}{\log ((4-x) \log (x))}} \left (e^{x^2} (60-15 x) \log (4)-15 e^{x^2} x \log (4) \log (x)+e^{x^2} \left (-120 x^2+30 x^3\right ) \log (4) \log (x) \log ((4-x) \log (x))\right )}{(-4+x) x \log (x) \log ^2((4-x) \log (x))} \, dx\\ &=\int \frac {15 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} \log (4) (-4+x-x \log (x) (-1+2 (-4+x) x \log (-((-4+x) \log (x)))))}{(4-x) x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx\\ &=(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (-4+x-x \log (x) (-1+2 (-4+x) x \log (-((-4+x) \log (x)))))}{(4-x) x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx\\ &=(15 \log (4)) \int \left (\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (4-x-x \log (x))}{(-4+x) x \log (x) \log ^2(-((-4+x) \log (x)))}+\frac {2 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))}\right ) \, dx\\ &=(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (4-x-x \log (x))}{(-4+x) x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=(15 \log (4)) \int \left (\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (4-x-x \log (x))}{4 (-4+x) \log (x) \log ^2(-((-4+x) \log (x)))}+\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (-4+x+x \log (x))}{4 x \log (x) \log ^2(-((-4+x) \log (x)))}\right ) \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (4-x-x \log (x))}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} (-4+x+x \log (x))}{x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=\frac {1}{4} (15 \log (4)) \int \left (\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log ^2(-((-4+x) \log (x)))}+\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log (x) \log ^2(-((-4+x) \log (x)))}-\frac {4 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{x \log (x) \log ^2(-((-4+x) \log (x)))}\right ) \, dx+\frac {1}{4} (15 \log (4)) \int \left (-\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{(-4+x) \log ^2(-((-4+x) \log (x)))}+\frac {4 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))}-\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))}\right ) \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log ^2(-((-4+x) \log (x)))} \, dx-\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{(-4+x) \log ^2(-((-4+x) \log (x)))} \, dx+\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log (x) \log ^2(-((-4+x) \log (x)))} \, dx-\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))} \, dx-(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=-\left (\frac {1}{4} (15 \log (4)) \int \left (\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log ^2(-((-4+x) \log (x)))}+\frac {4 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log ^2(-((-4+x) \log (x)))}\right ) \, dx\right )-\frac {1}{4} (15 \log (4)) \int \left (\frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log (x) \log ^2(-((-4+x) \log (x)))}+\frac {4 e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))}\right ) \, dx+\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log ^2(-((-4+x) \log (x)))} \, dx+\frac {1}{4} (15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{\log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log (x) \log ^2(-((-4+x) \log (x)))} \, dx-(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ &=-\left ((15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{(-4+x) \log ^2(-((-4+x) \log (x)))} \, dx\right )-(15 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}}}{x \log (x) \log ^2(-((-4+x) \log (x)))} \, dx+(30 \log (4)) \int \frac {e^{x^2+\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} x}{\log (-((-4+x) \log (x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 23, normalized size = 0.96 \begin {gather*} 5 e^{\frac {3 e^{x^2}}{\log (-((-4+x) \log (x)))}} \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 21, normalized size = 0.88 \begin {gather*} 10 \, e^{\left (\frac {3 \, e^{\left (x^{2}\right )}}{\log \left (-{\left (x - 4\right )} \log \relax (x)\right )}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.31, size = 24, normalized size = 1.00 \begin {gather*} 10 \, e^{\left (\frac {3 \, e^{\left (x^{2}\right )}}{\log \left (-x \log \relax (x) + 4 \, \log \relax (x)\right )}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 5.78, size = 129, normalized size = 5.38
method | result | size |
risch | \(10 \ln \relax (2) {\mathrm e}^{\frac {6 \,{\mathrm e}^{x^{2}}}{i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -4\right )\right )^{3}+i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -4\right )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )\right )+i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -4\right )\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )\right )-i \pi \,\mathrm {csgn}\left (i \ln \relax (x ) \left (x -4\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (x -4\right )\right )-2 i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -4\right )\right )^{2}+2 i \pi +2 \ln \left (\ln \relax (x )\right )+2 \ln \left (x -4\right )}}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.68, size = 24, normalized size = 1.00 \begin {gather*} 10\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{x^2}}{\ln \left (4\,\ln \relax (x)-x\,\ln \relax (x)\right )}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 22.45, size = 20, normalized size = 0.83 \begin {gather*} 10 e^{\frac {3 e^{x^{2}}}{\log {\left (\left (4 - x\right ) \log {\relax (x )} \right )}}} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________