Optimal. Leaf size=30 \[ e^{\frac {x}{-1+\frac {5-\frac {15 e^3}{x}}{x+\left (x+x^2\right )^2}}} \]
________________________________________________________________________________________
Rubi [F] time = 12.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-x^3-x^4-2 x^5-x^6}{15 e^3-5 x+x^2+x^3+2 x^4+x^5}\right ) \left (10 x^3+14 x^4+38 x^5+20 x^6-6 x^7-6 x^8-4 x^9-x^{10}+e^3 \left (-45 x^2-60 x^3-150 x^4-90 x^5\right )\right )}{225 e^6+25 x^2-10 x^3-9 x^4-18 x^5-5 x^6+6 x^7+6 x^8+4 x^9+x^{10}+e^3 \left (-150 x+30 x^2+30 x^3+60 x^4+30 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x^2 \left (-15 e^3 \left (3+4 x+10 x^2+6 x^3\right )-x \left (-10-14 x-38 x^2-20 x^3+6 x^4+6 x^5+4 x^6+x^7\right )\right )}{\left (15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )\right )^2} \, dx\\ &=\int \left (-\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right )+\frac {5 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (15 e^3 \left (2+15 e^3\right )-5 \left (2+27 e^3\right ) x+\left (22+9 e^3\right ) x^2-\left (1-6 e^3\right ) x^3+2 \left (1+3 e^3\right ) x^4\right )}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}-\frac {5 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (2+12 e^3-3 x\right )}{15 e^3-5 x+x^2+x^3+2 x^4+x^5}\right ) \, dx\\ &=5 \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (15 e^3 \left (2+15 e^3\right )-5 \left (2+27 e^3\right ) x+\left (22+9 e^3\right ) x^2-\left (1-6 e^3\right ) x^3+2 \left (1+3 e^3\right ) x^4\right )}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx-5 \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (2+12 e^3-3 x\right )}{15 e^3-5 x+x^2+x^3+2 x^4+x^5} \, dx-\int \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \, dx\\ &=5 \int \left (\frac {15 \exp \left (3-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (2+15 e^3\right )}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}-\frac {5 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (2+27 e^3\right ) x}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}+\frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (22+9 e^3\right ) x^2}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}+\frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (-1+6 e^3\right ) x^3}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}+\frac {2 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (1+3 e^3\right ) x^4}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2}\right ) \, dx-5 \int \left (\frac {2 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \left (1+6 e^3\right )}{15 e^3-5 x+x^2+x^3+2 x^4+x^5}-\frac {3 \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x}{15 e^3-5 x+x^2+x^3+2 x^4+x^5}\right ) \, dx-\int \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \, dx\\ &=15 \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x}{15 e^3-5 x+x^2+x^3+2 x^4+x^5} \, dx-\left (5 \left (1-6 e^3\right )\right ) \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x^3}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx+\left (10 \left (1+3 e^3\right )\right ) \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x^4}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx-\left (10 \left (1+6 e^3\right )\right ) \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right )}{15 e^3-5 x+x^2+x^3+2 x^4+x^5} \, dx+\left (5 \left (22+9 e^3\right )\right ) \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x^2}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx+\left (75 \left (2+15 e^3\right )\right ) \int \frac {\exp \left (3-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right )}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx-\left (25 \left (2+27 e^3\right )\right ) \int \frac {\exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) x}{\left (15 e^3-5 x+x^2+x^3+2 x^4+x^5\right )^2} \, dx-\int \exp \left (-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 42, normalized size = 1.40 \begin {gather*} e^{-\frac {x^3 \left (1+x+2 x^2+x^3\right )}{15 e^3+x \left (-5+x+x^2+2 x^3+x^4\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 42, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {x^{6} + 2 \, x^{5} + x^{4} + x^{3}}{x^{5} + 2 \, x^{4} + x^{3} + x^{2} - 5 \, x + 15 \, e^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.67, size = 42, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {x^{6} + 2 \, x^{5} + x^{4} + x^{3}}{x^{5} + 2 \, x^{4} + x^{3} + x^{2} - 5 \, x + 15 \, e^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 42, normalized size = 1.40
method | result | size |
gosper | \({\mathrm e}^{-\frac {x^{3} \left (x^{3}+2 x^{2}+x +1\right )}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}\) | \(42\) |
risch | \({\mathrm e}^{-\frac {x^{3} \left (x^{3}+2 x^{2}+x +1\right )}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}\) | \(42\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}+x^{3} {\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}+x^{5} {\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}-5 x \,{\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}+2 x^{4} {\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}+15 \,{\mathrm e}^{3} {\mathrm e}^{\frac {-x^{6}-2 x^{5}-x^{4}-x^{3}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}}}{15 \,{\mathrm e}^{3}+x^{5}+2 x^{4}+x^{3}+x^{2}-5 x}\) | \(333\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 63, normalized size = 2.10 \begin {gather*} e^{\left (-x - \frac {5 \, x^{2}}{x^{5} + 2 \, x^{4} + x^{3} + x^{2} - 5 \, x + 15 \, e^{3}} + \frac {15 \, x e^{3}}{x^{5} + 2 \, x^{4} + x^{3} + x^{2} - 5 \, x + 15 \, e^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 121, normalized size = 4.03 \begin {gather*} {\mathrm {e}}^{-\frac {x^3}{x^5+2\,x^4+x^3+x^2-5\,x+15\,{\mathrm {e}}^3}}\,{\mathrm {e}}^{-\frac {x^4}{x^5+2\,x^4+x^3+x^2-5\,x+15\,{\mathrm {e}}^3}}\,{\mathrm {e}}^{-\frac {2\,x^5}{x^5+2\,x^4+x^3+x^2-5\,x+15\,{\mathrm {e}}^3}}\,{\mathrm {e}}^{-\frac {x^6}{x^5+2\,x^4+x^3+x^2-5\,x+15\,{\mathrm {e}}^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 7.95, size = 41, normalized size = 1.37 \begin {gather*} e^{\frac {- x^{6} - 2 x^{5} - x^{4} - x^{3}}{x^{5} + 2 x^{4} + x^{3} + x^{2} - 5 x + 15 e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________