Optimal. Leaf size=28 \[ \frac {1-\log (5)-e (4-\log (x))-\frac {\log (x)}{x^2}}{16+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 99, normalized size of antiderivative = 3.54, number of steps used = 17, number of rules used = 10, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6, 1594, 27, 6742, 44, 77, 2357, 2304, 2314, 31} \begin {gather*} -\frac {\log (x)}{16 x^2}-\frac {4 e}{x+16}+\frac {\log (x)}{256 x}+\frac {(1-256 e) x \log (x)}{4096 (x+16)}+\frac {1}{16} e \log (x)-\frac {\log (x)}{4096}-\frac {1}{16} e \log (x+16)-\frac {(1-256 e) \log (x+16)}{4096}+\frac {\log (x+16)}{4096}+\frac {1-\log (5)}{x+16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 31
Rule 44
Rule 77
Rule 1594
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16-x+e \left (16 x^2+5 x^3\right )+x^3 (-1+\log (5))+\left (32+3 x-e x^3\right ) \log (x)}{256 x^3+32 x^4+x^5} \, dx\\ &=\int \frac {-16-x+e \left (16 x^2+5 x^3\right )+x^3 (-1+\log (5))+\left (32+3 x-e x^3\right ) \log (x)}{x^3 \left (256+32 x+x^2\right )} \, dx\\ &=\int \frac {-16-x+e \left (16 x^2+5 x^3\right )+x^3 (-1+\log (5))+\left (32+3 x-e x^3\right ) \log (x)}{x^3 (16+x)^2} \, dx\\ &=\int \left (-\frac {16}{x^3 (16+x)^2}-\frac {1}{x^2 (16+x)^2}+\frac {e (16+5 x)}{x (16+x)^2}+\frac {-1+\log (5)}{(16+x)^2}-\frac {\left (-32-3 x+e x^3\right ) \log (x)}{x^3 (16+x)^2}\right ) \, dx\\ &=\frac {1-\log (5)}{16+x}-16 \int \frac {1}{x^3 (16+x)^2} \, dx+e \int \frac {16+5 x}{x (16+x)^2} \, dx-\int \frac {1}{x^2 (16+x)^2} \, dx-\int \frac {\left (-32-3 x+e x^3\right ) \log (x)}{x^3 (16+x)^2} \, dx\\ &=\frac {1-\log (5)}{16+x}-16 \int \left (\frac {1}{256 x^3}-\frac {1}{2048 x^2}+\frac {3}{65536 x}-\frac {1}{4096 (16+x)^2}-\frac {3}{65536 (16+x)}\right ) \, dx+e \int \left (\frac {1}{16 x}+\frac {4}{(16+x)^2}-\frac {1}{16 (16+x)}\right ) \, dx-\int \left (\frac {1}{256 x^2}-\frac {1}{2048 x}+\frac {1}{256 (16+x)^2}+\frac {1}{2048 (16+x)}\right ) \, dx-\int \left (-\frac {\log (x)}{8 x^3}+\frac {\log (x)}{256 x^2}+\frac {(-1+256 e) \log (x)}{256 (16+x)^2}\right ) \, dx\\ &=\frac {1}{32 x^2}-\frac {1}{256 x}-\frac {4 e}{16+x}+\frac {1-\log (5)}{16+x}-\frac {\log (x)}{4096}+\frac {1}{16} e \log (x)+\frac {\log (16+x)}{4096}-\frac {1}{16} e \log (16+x)-\frac {1}{256} \int \frac {\log (x)}{x^2} \, dx+\frac {1}{8} \int \frac {\log (x)}{x^3} \, dx-\frac {1}{256} (-1+256 e) \int \frac {\log (x)}{(16+x)^2} \, dx\\ &=-\frac {4 e}{16+x}+\frac {1-\log (5)}{16+x}-\frac {\log (x)}{4096}+\frac {1}{16} e \log (x)-\frac {\log (x)}{16 x^2}+\frac {\log (x)}{256 x}+\frac {(1-256 e) x \log (x)}{4096 (16+x)}+\frac {\log (16+x)}{4096}-\frac {1}{16} e \log (16+x)-\frac {(1-256 e) \int \frac {1}{16+x} \, dx}{4096}\\ &=-\frac {4 e}{16+x}+\frac {1-\log (5)}{16+x}-\frac {\log (x)}{4096}+\frac {1}{16} e \log (x)-\frac {\log (x)}{16 x^2}+\frac {\log (x)}{256 x}+\frac {(1-256 e) x \log (x)}{4096 (16+x)}+\frac {\log (16+x)}{4096}-\frac {(1-256 e) \log (16+x)}{4096}-\frac {1}{16} e \log (16+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 32, normalized size = 1.14 \begin {gather*} \frac {-x^2 (-1+4 e+\log (5))+\left (-1+e x^2\right ) \log (x)}{x^2 (16+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 44, normalized size = 1.57 \begin {gather*} -\frac {4 \, x^{2} e + x^{2} \log \relax (5) - x^{2} - {\left (x^{2} e - 1\right )} \log \relax (x)}{x^{3} + 16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 42, normalized size = 1.50 \begin {gather*} \frac {x^{2} e \log \relax (x) - 4 \, x^{2} e - x^{2} \log \relax (5) + x^{2} - \log \relax (x)}{x^{3} + 16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 37, normalized size = 1.32
method | result | size |
norman | \(\frac {\left (1-4 \,{\mathrm e}-\ln \relax (5)\right ) x^{2}+x^{2} {\mathrm e} \ln \relax (x )-\ln \relax (x )}{x^{2} \left (x +16\right )}\) | \(37\) |
risch | \(\frac {\left (x^{2} {\mathrm e}-1\right ) \ln \relax (x )}{x^{2} \left (x +16\right )}+\frac {1}{x +16}-\frac {4 \,{\mathrm e}}{x +16}-\frac {\ln \relax (5)}{x +16}\) | \(44\) |
default | \(-\frac {\ln \relax (5)}{x +16}-\frac {4 \,{\mathrm e}}{x +16}+\frac {1}{x +16}-\frac {\ln \relax (x )}{4096}+\frac {{\mathrm e} \ln \relax (x )}{16}-\frac {\ln \relax (x )}{16 x^{2}}+\frac {\ln \relax (x )}{256 x}-\frac {{\mathrm e} \ln \relax (x ) x}{16 \left (x +16\right )}+\frac {x \ln \relax (x )}{4096 x +65536}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 147, normalized size = 5.25 \begin {gather*} \frac {1}{16} \, {\left (\frac {16}{x + 16} - \log \left (x + 16\right ) + \log \relax (x)\right )} e + \frac {1}{4096} \, {\left (256 \, e - 1\right )} \log \left (x + 16\right ) + \frac {16 \, x^{2} - {\left (x^{3} {\left (256 \, e - 1\right )} - 16 \, x^{2} + 4096\right )} \log \relax (x) + 128 \, x - 2048}{4096 \, {\left (x^{3} + 16 \, x^{2}\right )}} - \frac {3 \, x^{2} + 24 \, x - 128}{256 \, {\left (x^{3} + 16 \, x^{2}\right )}} + \frac {x + 8}{128 \, {\left (x^{2} + 16 \, x\right )}} - \frac {5 \, e}{x + 16} - \frac {\log \relax (5)}{x + 16} + \frac {1}{x + 16} + \frac {1}{4096} \, \log \left (x + 16\right ) - \frac {1}{4096} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 40, normalized size = 1.43 \begin {gather*} \frac {x^4\,\left (\frac {\mathrm {e}}{4}+\frac {\ln \relax (5)}{16}-\frac {1}{16}\right )-x\,\ln \relax (x)+x^3\,\mathrm {e}\,\ln \relax (x)}{x^4+16\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 32, normalized size = 1.14 \begin {gather*} \frac {\left (e x^{2} - 1\right ) \log {\relax (x )}}{x^{3} + 16 x^{2}} - \frac {-1 + \log {\relax (5 )} + 4 e}{x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________