Optimal. Leaf size=15 \[ 3+e^{2 x+x^{\frac {1}{x}}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.21, antiderivative size = 54, normalized size of antiderivative = 3.60, number of steps used = 1, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2288} \begin {gather*} \frac {e^{x^{\frac {1}{x}}+2 x} \left (x^{\frac {1}{x}} (1-\log (x))+2 x^2\right )}{x \left (x^{\frac {1}{x}} \left (\frac {1}{x^2}-\frac {\log (x)}{x^2}\right )+2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{2 x+x^{\frac {1}{x}}} \left (2 x^2+x^{\frac {1}{x}} (1-\log (x))\right )}{x \left (2+x^{\frac {1}{x}} \left (\frac {1}{x^2}-\frac {\log (x)}{x^2}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 13, normalized size = 0.87 \begin {gather*} e^{2 x+x^{\frac {1}{x}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 12, normalized size = 0.80 \begin {gather*} x e^{\left (2 \, x + x^{\left (\frac {1}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{2} - x^{\left (\frac {1}{x}\right )} {\left (\log \relax (x) - 1\right )} + x\right )} e^{\left (2 \, x + x^{\left (\frac {1}{x}\right )}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 13, normalized size = 0.87
method | result | size |
risch | \({\mathrm e}^{x^{\frac {1}{x}}+2 x} x\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 12, normalized size = 0.80 \begin {gather*} x e^{\left (2 \, x + x^{\left (\frac {1}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.33, size = 12, normalized size = 0.80 \begin {gather*} x\,{\mathrm {e}}^{x^{1/x}}\,{\mathrm {e}}^{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.99, size = 12, normalized size = 0.80 \begin {gather*} x e^{2 x + e^{\frac {\log {\relax (x )}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________