Optimal. Leaf size=35 \[ 3 \left (-4+e^{3+\frac {16 e^{\frac {1}{4} (-3+x)}-\log \left (\frac {x}{3}\right )}{3 x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.13, antiderivative size = 45, normalized size of antiderivative = 1.29, number of steps used = 2, number of rules used = 2, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {12, 6706} \begin {gather*} 3^{\frac {1}{3 x}+1} e^{\frac {9 x+16 e^{\frac {x-3}{4}}}{3 x}} x^{\left .-\frac {1}{3}\right /x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {\exp \left (\frac {e^{\frac {1}{4} (-3+x+16 \log (2))}+9 x-\log \left (\frac {x}{3}\right )}{3 x}\right ) \left (-4+e^{\frac {1}{4} (-3+x+16 \log (2))} (-4+x)+4 \log \left (\frac {x}{3}\right )\right )}{x^2} \, dx\\ &=3^{1+\frac {1}{3 x}} e^{\frac {16 e^{\frac {1}{4} (-3+x)}+9 x}{3 x}} x^{\left .-\frac {1}{3}\right /x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.23, size = 71, normalized size = 2.03 \begin {gather*} \frac {1}{4} \int \frac {e^{\frac {e^{\frac {1}{4} (-3+x+16 \log (2))}+9 x-\log \left (\frac {x}{3}\right )}{3 x}} \left (-4+e^{\frac {1}{4} (-3+x+16 \log (2))} (-4+x)+4 \log \left (\frac {x}{3}\right )\right )}{x^2} \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 28, normalized size = 0.80 \begin {gather*} 3 \, e^{\left (\frac {9 \, x + e^{\left (\frac {1}{4} \, x + 4 \, \log \relax (2) - \frac {3}{4}\right )} - \log \left (\frac {1}{3} \, x\right )}{3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 29, normalized size = 0.83 \begin {gather*} 3 \, e^{\left (\frac {e^{\left (\frac {1}{4} \, x + 4 \, \log \relax (2) - \frac {3}{4}\right )}}{3 \, x} - \frac {\log \left (\frac {1}{3} \, x\right )}{3 \, x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 0.77
method | result | size |
risch | \(3 \,{\mathrm e}^{\frac {-\ln \left (\frac {x}{3}\right )+16 \,{\mathrm e}^{\frac {x}{4}-\frac {3}{4}}+9 x}{3 x}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 30, normalized size = 0.86 \begin {gather*} 3 \, e^{\left (\frac {16 \, e^{\left (\frac {1}{4} \, x - \frac {3}{4}\right )}}{3 \, x} + \frac {\log \relax (3)}{3 \, x} - \frac {\log \relax (x)}{3 \, x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 33, normalized size = 0.94 \begin {gather*} \frac {3^{\frac {1}{3\,x}+1}\,{\mathrm {e}}^{\frac {16\,{\mathrm {e}}^{x/4}\,{\mathrm {e}}^{-\frac {3}{4}}}{3\,x}+3}}{x^{\frac {1}{3\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 26, normalized size = 0.74 \begin {gather*} 3 e^{\frac {3 x + \frac {16 e^{\frac {x}{4} - \frac {3}{4}}}{3} - \frac {\log {\left (\frac {x}{3} \right )}}{3}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________