Optimal. Leaf size=26 \[ \frac {4}{5} \left (16-e^{\left .\frac {1}{2}\right /x}+\frac {1}{3} (-4+x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.35, number of steps used = 5, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 14, 2209, 2288} \begin {gather*} \frac {4}{45} (x+44)^2-\frac {8}{15} e^{\left .\frac {1}{2}\right /x} (x+44)+\frac {4 e^{\frac {1}{x}}}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2209
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{45} \int \frac {-36 e^{\frac {1}{x}}+352 x^2+8 x^3+e^{\left .\frac {1}{2}\right /x} \left (528+12 x-24 x^2\right )}{x^2} \, dx\\ &=\frac {1}{45} \int \left (-\frac {36 e^{\frac {1}{x}}}{x^2}+8 (44+x)-\frac {12 e^{\left .\frac {1}{2}\right /x} \left (-44-x+2 x^2\right )}{x^2}\right ) \, dx\\ &=\frac {4}{45} (44+x)^2-\frac {4}{15} \int \frac {e^{\left .\frac {1}{2}\right /x} \left (-44-x+2 x^2\right )}{x^2} \, dx-\frac {4}{5} \int \frac {e^{\frac {1}{x}}}{x^2} \, dx\\ &=\frac {4 e^{\frac {1}{x}}}{5}-\frac {8}{15} e^{\left .\frac {1}{2}\right /x} (44+x)+\frac {4}{45} (44+x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.77 \begin {gather*} \frac {4}{45} \left (44-3 e^{\left .\frac {1}{2}\right /x}+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 26, normalized size = 1.00 \begin {gather*} \frac {4}{45} \, x^{2} - \frac {8}{15} \, {\left (x + 44\right )} e^{\left (\frac {1}{2 \, x}\right )} + \frac {352}{45} \, x + \frac {4}{5} \, e^{\frac {1}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 32, normalized size = 1.23 \begin {gather*} \frac {4}{45} \, x^{2} - \frac {8}{15} \, x e^{\left (\frac {1}{2 \, x}\right )} + \frac {352}{45} \, x - \frac {352}{15} \, e^{\left (\frac {1}{2 \, x}\right )} + \frac {4}{5} \, e^{\frac {1}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 29, normalized size = 1.12
method | result | size |
risch | \(\frac {4 x^{2}}{45}+\frac {4 \,{\mathrm e}^{\frac {1}{x}}}{5}+\frac {352 x}{45}+\frac {\left (-1056-24 x \right ) {\mathrm e}^{\frac {1}{2 x}}}{45}\) | \(29\) |
derivativedivides | \(\frac {4 x^{2}}{45}+\frac {352 x}{45}+\frac {4 \,{\mathrm e}^{\frac {1}{x}}}{5}-\frac {8 \,{\mathrm e}^{\frac {1}{2 x}} x}{15}-\frac {352 \,{\mathrm e}^{\frac {1}{2 x}}}{15}\) | \(37\) |
default | \(\frac {4 x^{2}}{45}+\frac {352 x}{45}+\frac {4 \,{\mathrm e}^{\frac {1}{x}}}{5}-\frac {8 \,{\mathrm e}^{\frac {1}{2 x}} x}{15}-\frac {352 \,{\mathrm e}^{\frac {1}{2 x}}}{15}\) | \(37\) |
norman | \(\frac {\frac {352 x^{2}}{45}+\frac {4 x^{3}}{45}-\frac {352 \,{\mathrm e}^{\frac {1}{2 x}} x}{15}-\frac {8 \,{\mathrm e}^{\frac {1}{2 x}} x^{2}}{15}+\frac {4 x \,{\mathrm e}^{\frac {1}{x}}}{5}}{x}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 40, normalized size = 1.54 \begin {gather*} \frac {4}{45} \, x^{2} + \frac {352}{45} \, x - \frac {4}{15} \, {\rm Ei}\left (\frac {1}{2 \, x}\right ) - \frac {352}{15} \, e^{\left (\frac {1}{2 \, x}\right )} + \frac {4}{5} \, e^{\frac {1}{x}} + \frac {4}{15} \, \Gamma \left (-1, -\frac {1}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 33, normalized size = 1.27 \begin {gather*} \frac {4\,{\mathrm {e}}^{1/x}}{5}-\frac {352\,{\mathrm {e}}^{\frac {1}{2\,x}}}{15}-x\,\left (\frac {8\,{\mathrm {e}}^{\frac {1}{2\,x}}}{15}-\frac {352}{45}\right )+\frac {4\,x^2}{45} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 34, normalized size = 1.31 \begin {gather*} \frac {4 x^{2}}{45} + \frac {352 x}{45} + \frac {\left (- 40 x - 1760\right ) e^{\frac {1}{2 x}}}{75} + \frac {4 e^{\frac {1}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________