Optimal. Leaf size=33 \[ \frac {x}{4+2 x+\frac {1}{5} \left (e^{e^5}+e^{\frac {x^2}{-2+3 x}}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 5.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {400-1200 x+900 x^2+e^{\frac {x^2}{-2+3 x}} \left (20 x^3-15 x^4\right )}{1600-3200 x-800 x^2+2400 x^3+900 x^4+e^{2 e^5} \left (4 x^2-12 x^3+9 x^4\right )+e^{\frac {2 x^2}{-2+3 x}} \left (4 x^2-12 x^3+9 x^4\right )+e^{\frac {x^2}{-2+3 x}} \left (160 x-400 x^2+120 x^3+180 x^4\right )+e^{e^5} \left (160 x-400 x^2+120 x^3+180 x^4+e^{\frac {x^2}{-2+3 x}} \left (8 x^2-24 x^3+18 x^4\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (80-240 x+180 x^2+4 e^{\frac {x^2}{-2+3 x}} x^3-3 e^{\frac {x^2}{-2+3 x}} x^4\right )}{(2-3 x)^2 \left (20+\left (10+e^{e^5}+e^{\frac {x^2}{-2+3 x}}\right ) x\right )^2} \, dx\\ &=5 \int \frac {80-240 x+180 x^2+4 e^{\frac {x^2}{-2+3 x}} x^3-3 e^{\frac {x^2}{-2+3 x}} x^4}{(2-3 x)^2 \left (20+\left (10+e^{e^5}+e^{\frac {x^2}{-2+3 x}}\right ) x\right )^2} \, dx\\ &=5 \int \left (\frac {(4-3 x) x^2}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )}+\frac {80-240 x+100 x^2+4 \left (5-e^{e^5}\right ) x^3+3 \left (10+e^{e^5}\right ) x^4}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}\right ) \, dx\\ &=5 \int \frac {(4-3 x) x^2}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )} \, dx+5 \int \frac {80-240 x+100 x^2+4 \left (5-e^{e^5}\right ) x^3+3 \left (10+e^{e^5}\right ) x^4}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx\\ &=5 \int \left (\frac {4 \left (125-e^{e^5}\right )}{27 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}+\frac {16 \left (-40-e^{e^5}\right )}{27 (2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}+\frac {16 \left (25+e^{e^5}\right )}{27 (2-3 x) \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}+\frac {20 x}{3 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}+\frac {\left (10+e^{e^5}\right ) x^2}{3 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2}\right ) \, dx+5 \int \left (\frac {x}{3 \left (-20-e^{\frac {x^2}{-2+3 x}} x-10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )}+\frac {8}{9 (2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )}+\frac {4}{9 (-2+3 x) \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )}\right ) \, dx\\ &=\frac {5}{3} \int \frac {x}{-20-e^{\frac {x^2}{-2+3 x}} x-10 \left (1+\frac {e^{e^5}}{10}\right ) x} \, dx+\frac {20}{9} \int \frac {1}{(-2+3 x) \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )} \, dx+\frac {40}{9} \int \frac {1}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )} \, dx+\frac {100}{3} \int \frac {x}{\left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx+\frac {1}{27} \left (20 \left (125-e^{e^5}\right )\right ) \int \frac {1}{\left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx+\frac {1}{3} \left (5 \left (10+e^{e^5}\right )\right ) \int \frac {x^2}{\left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx+\frac {1}{27} \left (80 \left (25+e^{e^5}\right )\right ) \int \frac {1}{(2-3 x) \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx-\frac {1}{27} \left (80 \left (40+e^{e^5}\right )\right ) \int \frac {1}{(2-3 x)^2 \left (20+e^{\frac {x^2}{-2+3 x}} x+10 \left (1+\frac {e^{e^5}}{10}\right ) x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 0.88 \begin {gather*} \frac {5 x}{20+\left (10+e^{e^5}+e^{\frac {x^2}{-2+3 x}}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 29, normalized size = 0.88 \begin {gather*} \frac {5 \, x}{x e^{\left (\frac {x^{2}}{3 \, x - 2}\right )} + x e^{\left (e^{5}\right )} + 10 \, x + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.48, size = 30, normalized size = 0.91
method | result | size |
risch | \(\frac {5 x}{x \,{\mathrm e}^{\frac {x^{2}}{3 x -2}}+x \,{\mathrm e}^{{\mathrm e}^{5}}+10 x +20}\) | \(30\) |
norman | \(\frac {15 x^{2}-10 x}{\left (3 x -2\right ) \left (x \,{\mathrm e}^{\frac {x^{2}}{3 x -2}}+x \,{\mathrm e}^{{\mathrm e}^{5}}+10 x +20\right )}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 31, normalized size = 0.94 \begin {gather*} \frac {5}{{\mathrm {e}}^{\frac {x^2}{3\,x-2}}+\frac {10\,x+x\,{\mathrm {e}}^{{\mathrm {e}}^5}+20}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 26, normalized size = 0.79 \begin {gather*} \frac {5 x}{x e^{\frac {x^{2}}{3 x - 2}} + 10 x + x e^{e^{5}} + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________