Optimal. Leaf size=30 \[ x+5 x^2-\log \left (-e^{-e^x+x}+x+(-2+x) x^3\right ) \]
________________________________________________________________________________________
Rubi [F] time = 106.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-x-16 x^2+6 x^3+19 x^4-10 x^5+e^{-e^x+x} \left (e^x+10 x\right )}{e^{-e^x+x}-x+2 x^3-x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+x \left (10+e^{e^x}-2 e^{e^x} x^2+e^{e^x} x^3\right )-\frac {e^{e^x} \left (1-x-6 x^2+e^{e^x} x^2+6 x^3-x^4-4 e^{e^x} x^4+2 e^{e^x} x^5+4 e^{e^x} x^6-4 e^{e^x} x^7+e^{e^x} x^8\right )}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}\right ) \, dx\\ &=\int e^x \, dx+\int x \left (10+e^{e^x}-2 e^{e^x} x^2+e^{e^x} x^3\right ) \, dx-\int \frac {e^{e^x} \left (1-x-6 x^2+e^{e^x} x^2+6 x^3-x^4-4 e^{e^x} x^4+2 e^{e^x} x^5+4 e^{e^x} x^6-4 e^{e^x} x^7+e^{e^x} x^8\right )}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx\\ &=e^x+\int \left (10 x+e^{e^x} x \left (1-2 x^2+x^3\right )\right ) \, dx-\int \left (-\frac {e^{e^x}}{e^x-e^{e^x} x+2 e^{e^x} x^3-e^{e^x} x^4}-\frac {e^{e^x} x}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}-\frac {6 e^{e^x} x^2}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}+\frac {e^{2 e^x} x^2}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}+\frac {6 e^{e^x} x^3}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}-\frac {e^{e^x} x^4}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}-\frac {4 e^{2 e^x} x^4}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}+\frac {2 e^{2 e^x} x^5}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}+\frac {4 e^{2 e^x} x^6}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}-\frac {4 e^{2 e^x} x^7}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}+\frac {e^{2 e^x} x^8}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4}\right ) \, dx\\ &=e^x+5 x^2-2 \int \frac {e^{2 e^x} x^5}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx+4 \int \frac {e^{2 e^x} x^4}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx-4 \int \frac {e^{2 e^x} x^6}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx+4 \int \frac {e^{2 e^x} x^7}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx+6 \int \frac {e^{e^x} x^2}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx-6 \int \frac {e^{e^x} x^3}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx+\int e^{e^x} x \left (1-2 x^2+x^3\right ) \, dx+\int \frac {e^{e^x}}{e^x-e^{e^x} x+2 e^{e^x} x^3-e^{e^x} x^4} \, dx+\int \frac {e^{e^x} x}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx-\int \frac {e^{2 e^x} x^2}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx+\int \frac {e^{e^x} x^4}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx-\int \frac {e^{2 e^x} x^8}{-e^x+e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4} \, dx\\ &=e^x+5 x^2-2 \int \frac {e^{2 e^x} x^5}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+4 \int \frac {e^{2 e^x} x^4}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-4 \int \frac {e^{2 e^x} x^6}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+4 \int \frac {e^{2 e^x} x^7}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+6 \int \frac {e^{e^x} x^2}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-6 \int \frac {e^{e^x} x^3}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int \left (e^{e^x} x-2 e^{e^x} x^3+e^{e^x} x^4\right ) \, dx+\int \frac {e^{e^x}}{e^x-e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int \frac {e^{e^x} x}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-\int \frac {e^{2 e^x} x^2}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int \frac {e^{e^x} x^4}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-\int \frac {e^{2 e^x} x^8}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx\\ &=e^x+5 x^2-2 \int e^{e^x} x^3 \, dx-2 \int \frac {e^{2 e^x} x^5}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+4 \int \frac {e^{2 e^x} x^4}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-4 \int \frac {e^{2 e^x} x^6}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+4 \int \frac {e^{2 e^x} x^7}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+6 \int \frac {e^{e^x} x^2}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-6 \int \frac {e^{e^x} x^3}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int e^{e^x} x \, dx+\int e^{e^x} x^4 \, dx+\int \frac {e^{e^x}}{e^x-e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int \frac {e^{e^x} x}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-\int \frac {e^{2 e^x} x^2}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx+\int \frac {e^{e^x} x^4}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx-\int \frac {e^{2 e^x} x^8}{-e^x+e^{e^x} \left (x-2 x^3+x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.08, size = 35, normalized size = 1.17 \begin {gather*} e^x+x+5 x^2-\log \left (e^x-e^{e^x} x \left (1-2 x^2+x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 31, normalized size = 1.03 \begin {gather*} 5 \, x^{2} + x - \log \left (-x^{4} + 2 \, x^{3} - x + e^{\left (x - e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 31, normalized size = 1.03 \begin {gather*} 5 \, x^{2} + x - \log \left (-x^{4} + 2 \, x^{3} - x + e^{\left (x - e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 1.00
method | result | size |
norman | \(5 x^{2}+x -\ln \left (x^{4}-2 x^{3}+x -{\mathrm e}^{x -{\mathrm e}^{x}}\right )\) | \(30\) |
risch | \(5 x^{2}+x -\ln \left ({\mathrm e}^{x -{\mathrm e}^{x}}-x^{4}+2 x^{3}-x \right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 65, normalized size = 2.17 \begin {gather*} 5 \, x^{2} + x + e^{x} - \log \left (x^{2} - x - 1\right ) - \log \left (x - 1\right ) - \log \relax (x) - \log \left (\frac {{\left (x^{4} - 2 \, x^{3} + x\right )} e^{\left (e^{x}\right )} - e^{x}}{x^{4} - 2 \, x^{3} + x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 29, normalized size = 0.97 \begin {gather*} x-\ln \left (x-{\mathrm {e}}^{x-{\mathrm {e}}^x}-2\,x^3+x^4\right )+5\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 24, normalized size = 0.80 \begin {gather*} 5 x^{2} + x - \log {\left (- x^{4} + 2 x^{3} - x + e^{x - e^{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________