Optimal. Leaf size=25 \[ x-(-4+x) x+x \left (e^{2 \log ^2(x)}+\frac {x}{\log (3)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 2288} \begin {gather*} \frac {x^2}{\log (3)}-\frac {1}{4} (5-2 x)^2+x e^{2 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2 x+(5-2 x) \log (3)+e^{2 \log ^2(x)} (\log (3)+4 \log (3) \log (x))\right ) \, dx}{\log (3)}\\ &=-\frac {1}{4} (5-2 x)^2+\frac {x^2}{\log (3)}+\frac {\int e^{2 \log ^2(x)} (\log (3)+4 \log (3) \log (x)) \, dx}{\log (3)}\\ &=-\frac {1}{4} (5-2 x)^2+e^{2 \log ^2(x)} x+\frac {x^2}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 1.08 \begin {gather*} 5 x+e^{2 \log ^2(x)} x-x^2+\frac {x^2}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 31, normalized size = 1.24 \begin {gather*} \frac {x e^{\left (2 \, \log \relax (x)^{2}\right )} \log \relax (3) + x^{2} - {\left (x^{2} - 5 \, x\right )} \log \relax (3)}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 31, normalized size = 1.24 \begin {gather*} \frac {x e^{\left (2 \, \log \relax (x)^{2}\right )} \log \relax (3) + x^{2} - {\left (x^{2} - 5 \, x\right )} \log \relax (3)}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 1.08
method | result | size |
norman | \(x \,{\mathrm e}^{2 \ln \relax (x )^{2}}+5 x -\frac {\left (\ln \relax (3)-1\right ) x^{2}}{\ln \relax (3)}\) | \(27\) |
risch | \(-x^{2}+5 x +x \,{\mathrm e}^{2 \ln \relax (x )^{2}}+\frac {x^{2}}{\ln \relax (3)}\) | \(27\) |
default | \(\frac {-x^{2} \ln \relax (3)+5 x \ln \relax (3)+x \ln \relax (3) {\mathrm e}^{2 \ln \relax (x )^{2}}+x^{2}}{\ln \relax (3)}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 31, normalized size = 1.24 \begin {gather*} \frac {x e^{\left (2 \, \log \relax (x)^{2}\right )} \log \relax (3) + x^{2} - {\left (x^{2} - 5 \, x\right )} \log \relax (3)}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 26, normalized size = 1.04 \begin {gather*} 5\,x+\frac {x^2}{\ln \relax (3)}-x^2+x\,{\mathrm {e}}^{2\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.96 \begin {gather*} \frac {x^{2} \left (1 - \log {\relax (3 )}\right )}{\log {\relax (3 )}} + x e^{2 \log {\relax (x )}^{2}} + 5 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________