Optimal. Leaf size=22 \[ \left (7+e^{-3 x}+3 x-\log \left (\frac {x^2}{4}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.19, antiderivative size = 58, normalized size of antiderivative = 2.64, number of steps used = 18, number of rules used = 9, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6688, 12, 6742, 2194, 2199, 2178, 2176, 2554, 6686} \begin {gather*} \left (-\log \left (x^2\right )+3 x+7+\log (4)\right )^2-2 e^{-3 x} \log \left (x^2\right )+e^{-6 x}+14 e^{-3 x}+6 e^{-3 x} x+\frac {2}{3} e^{-3 x} \log (64) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-6 x} \left (3 x-e^{3 x} (-2+3 x)\right ) \left (-1-e^{3 x} (7+3 x)+e^{3 x} \log \left (\frac {x^2}{4}\right )\right )}{x} \, dx\\ &=2 \int \frac {e^{-6 x} \left (3 x-e^{3 x} (-2+3 x)\right ) \left (-1-e^{3 x} (7+3 x)+e^{3 x} \log \left (\frac {x^2}{4}\right )\right )}{x} \, dx\\ &=2 \int \left (-3 e^{-6 x}-\frac {e^{-3 x} \left (2+18 x+9 x^2-3 x \log \left (\frac {x^2}{4}\right )\right )}{x}+\frac {(2-3 x) \left (-3 x-7 \left (1+\frac {2 \log (2)}{7}\right )+\log \left (x^2\right )\right )}{x}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-3 x} \left (2+18 x+9 x^2-3 x \log \left (\frac {x^2}{4}\right )\right )}{x} \, dx\right )+2 \int \frac {(2-3 x) \left (-3 x-7 \left (1+\frac {2 \log (2)}{7}\right )+\log \left (x^2\right )\right )}{x} \, dx-6 \int e^{-6 x} \, dx\\ &=e^{-6 x}+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 \int \left (\frac {e^{-3 x} \left (2+18 x+9 x^2\right )}{x}+e^{-3 x} \log (64)-3 e^{-3 x} \log \left (x^2\right )\right ) \, dx\\ &=e^{-6 x}+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 \int \frac {e^{-3 x} \left (2+18 x+9 x^2\right )}{x} \, dx+6 \int e^{-3 x} \log \left (x^2\right ) \, dx-(2 \log (64)) \int e^{-3 x} \, dx\\ &=e^{-6 x}+\frac {2}{3} e^{-3 x} \log (64)+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 e^{-3 x} \log \left (x^2\right )-2 \int \left (18 e^{-3 x}+\frac {2 e^{-3 x}}{x}+9 e^{-3 x} x\right ) \, dx-6 \int -\frac {2 e^{-3 x}}{3 x} \, dx\\ &=e^{-6 x}+\frac {2}{3} e^{-3 x} \log (64)+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 e^{-3 x} \log \left (x^2\right )-18 \int e^{-3 x} x \, dx-36 \int e^{-3 x} \, dx\\ &=e^{-6 x}+12 e^{-3 x}+6 e^{-3 x} x+\frac {2}{3} e^{-3 x} \log (64)+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 e^{-3 x} \log \left (x^2\right )-6 \int e^{-3 x} \, dx\\ &=e^{-6 x}+14 e^{-3 x}+6 e^{-3 x} x+\frac {2}{3} e^{-3 x} \log (64)+\left (7+3 x+\log (4)-\log \left (x^2\right )\right )^2-2 e^{-3 x} \log \left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.36, size = 61, normalized size = 2.77 \begin {gather*} e^{-6 x}+42 x+9 x^2+2 e^{-3 x} (7+3 x)-28 \log (x)+2 \left (-e^{-3 x}-3 x\right ) \log \left (\frac {x^2}{4}\right )+\log ^2\left (\frac {x^2}{4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 69, normalized size = 3.14 \begin {gather*} {\left (e^{\left (6 \, x\right )} \log \left (\frac {1}{4} \, x^{2}\right )^{2} + 3 \, {\left (3 \, x^{2} + 14 \, x\right )} e^{\left (6 \, x\right )} + 2 \, {\left (3 \, x + 7\right )} e^{\left (3 \, x\right )} - 2 \, {\left ({\left (3 \, x + 7\right )} e^{\left (6 \, x\right )} + e^{\left (3 \, x\right )}\right )} \log \left (\frac {1}{4} \, x^{2}\right ) + 1\right )} e^{\left (-6 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 77, normalized size = 3.50 \begin {gather*} 9 \, x^{2} + 6 \, x e^{\left (-3 \, x\right )} + 12 \, x \log \relax (2) + 4 \, e^{\left (-3 \, x\right )} \log \relax (2) - 12 \, x \log \left (x \mathrm {sgn}\relax (x)\right ) - 4 \, e^{\left (-3 \, x\right )} \log \left (x \mathrm {sgn}\relax (x)\right ) + 4 \, \log \left (x \mathrm {sgn}\relax (x)\right )^{2} - 8 \, \log \relax (2) \log \relax (x) + 42 \, x + 14 \, e^{\left (-3 \, x\right )} + e^{\left (-6 \, x\right )} - 28 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.25, size = 94, normalized size = 4.27
method | result | size |
default | \(4 \ln \relax (2) {\mathrm e}^{-3 x}-2 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) {\mathrm e}^{-3 x}+14 \,{\mathrm e}^{-3 x}+6 x \,{\mathrm e}^{-3 x}-4 \ln \relax (x ) {\mathrm e}^{-3 x}+{\mathrm e}^{-6 x}+9 x^{2}+42 x -28 \ln \relax (x )-6 x \ln \left (x^{2}\right )+4 \ln \relax (x ) \ln \left (x^{2}\right )-4 \ln \relax (x )^{2}-8 \ln \relax (2) \ln \relax (x )+12 x \ln \relax (2)\) | \(94\) |
risch | \(4 \ln \relax (x )^{2}-4 \left (3 x \,{\mathrm e}^{3 x}+1\right ) {\mathrm e}^{-3 x} \ln \relax (x )+\left (1-8 \ln \relax (x ) \ln \relax (2) {\mathrm e}^{6 x}+12 \ln \relax (2) x \,{\mathrm e}^{6 x}+14 \,{\mathrm e}^{3 x}-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{3 x}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{6 x}+4 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{6 x}+3 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{6 x}+42 x \,{\mathrm e}^{6 x}+9 x^{2} {\mathrm e}^{6 x}+6 x \,{\mathrm e}^{3 x}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{3 x}+4 \ln \relax (2) {\mathrm e}^{3 x}-28 \ln \relax (x ) {\mathrm e}^{6 x}-6 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{6 x}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{6 x}+3 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{6 x}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{3 x}\right ) {\mathrm e}^{-6 x}\) | \(288\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 63, normalized size = 2.86 \begin {gather*} 9 \, x^{2} + 2 \, {\left (3 \, x + 1\right )} e^{\left (-3 \, x\right )} - 6 \, x \log \left (\frac {1}{4} \, x^{2}\right ) - 2 \, e^{\left (-3 \, x\right )} \log \left (\frac {1}{4} \, x^{2}\right ) + \log \left (\frac {1}{4} \, x^{2}\right )^{2} + 42 \, x + 12 \, e^{\left (-3 \, x\right )} + e^{\left (-6 \, x\right )} - 28 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 63, normalized size = 2.86 \begin {gather*} 30\,x+14\,{\mathrm {e}}^{-3\,x}+{\mathrm {e}}^{-6\,x}-28\,\ln \relax (x)+{\ln \left (\frac {x^2}{4}\right )}^2+6\,x\,{\mathrm {e}}^{-3\,x}-x\,\left (6\,\ln \left (\frac {x^2}{4}\right )-12\right )-2\,{\mathrm {e}}^{-3\,x}\,\ln \left (\frac {x^2}{4}\right )+9\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 56, normalized size = 2.55 \begin {gather*} 9 x^{2} - 6 x \log {\left (\frac {x^{2}}{4} \right )} + 42 x + \left (6 x - 2 \log {\left (\frac {x^{2}}{4} \right )} + 14\right ) e^{- 3 x} - 28 \log {\relax (x )} + \log {\left (\frac {x^{2}}{4} \right )}^{2} + e^{- 6 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________