Optimal. Leaf size=13 \[ \log \left (5+e^{2 x}-\frac {3}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+2 e^{2 x} x^2}{-3 x+5 x^2+e^{2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2-\frac {-3-6 x+10 x^2}{x \left (-3+5 x+e^{2 x} x\right )}\right ) \, dx\\ &=2 x-\int \frac {-3-6 x+10 x^2}{x \left (-3+5 x+e^{2 x} x\right )} \, dx\\ &=2 x-\int \left (-\frac {6}{-3+5 x+e^{2 x} x}-\frac {3}{x \left (-3+5 x+e^{2 x} x\right )}+\frac {10 x}{-3+5 x+e^{2 x} x}\right ) \, dx\\ &=2 x+3 \int \frac {1}{x \left (-3+5 x+e^{2 x} x\right )} \, dx+6 \int \frac {1}{-3+5 x+e^{2 x} x} \, dx-10 \int \frac {x}{-3+5 x+e^{2 x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 19, normalized size = 1.46 \begin {gather*} -\log (x)+\log \left (3-5 x-e^{2 x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 16, normalized size = 1.23 \begin {gather*} \log \left (\frac {x e^{\left (2 \, x\right )} + 5 \, x - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 17, normalized size = 1.31 \begin {gather*} \log \left (x e^{\left (2 \, x\right )} + 5 \, x - 3\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 1.23
method | result | size |
risch | \(\ln \left ({\mathrm e}^{2 x}+\frac {5 x -3}{x}\right )\) | \(16\) |
norman | \(-\ln \relax (x )+\ln \left (x \,{\mathrm e}^{2 x}+5 x -3\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 16, normalized size = 1.23 \begin {gather*} \log \left (\frac {x e^{\left (2 \, x\right )} + 5 \, x - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 17, normalized size = 1.31 \begin {gather*} \ln \left (5\,x+x\,{\mathrm {e}}^{2\,x}-3\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 12, normalized size = 0.92 \begin {gather*} \log {\left (e^{2 x} + \frac {5 x - 3}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________