Optimal. Leaf size=29 \[ 2 x-\frac {x}{x+\frac {5}{-2+\frac {4}{25 (4+4 \log (4))}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 28, normalized size of antiderivative = 0.97, number of steps used = 5, number of rules used = 4, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {1984, 27, 6, 683} \begin {gather*} 2 x+\frac {125 (1+\log (4))}{125 (1+\log (4))-x (49+50 \log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 683
Rule 1984
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-500 x (1+\log (4)) (49+50 \log (4))+2 x^2 (49+50 \log (4))^2+125 (1+\log (4)) (299+300 \log (4))}{15625 (1+\log (4))^2-250 x (1+\log (4)) (49+50 \log (4))+x^2 (49+50 \log (4))^2} \, dx\\ &=\int \frac {-500 x (1+\log (4)) (49+50 \log (4))+2 x^2 (49+50 \log (4))^2+125 (1+\log (4)) (299+300 \log (4))}{(-125+49 x-125 \log (4)+50 x \log (4))^2} \, dx\\ &=\int \frac {-500 x (1+\log (4)) (49+50 \log (4))+2 x^2 (49+50 \log (4))^2+125 (1+\log (4)) (299+300 \log (4))}{(-125-125 \log (4)+x (49+50 \log (4)))^2} \, dx\\ &=\int \left (2+\frac {125 (1+\log (4)) (49+50 \log (4))}{(125 (1+\log (4))-x (49+50 \log (4)))^2}\right ) \, dx\\ &=2 x+\frac {125 (1+\log (4))}{125 (1+\log (4))-x (49+50 \log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 60, normalized size = 2.07 \begin {gather*} \frac {-125 \left (49+99 \log (4)+50 \log ^2(4)\right )+2 (-125 (1+\log (4))+x (49+50 \log (4)))^2}{(49+50 \log (4)) (-125 (1+\log (4))+x (49+50 \log (4)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 41, normalized size = 1.41 \begin {gather*} \frac {98 \, x^{2} + 50 \, {\left (4 \, x^{2} - 10 \, x - 5\right )} \log \relax (2) - 250 \, x - 125}{50 \, {\left (2 \, x - 5\right )} \log \relax (2) + 49 \, x - 125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 57, normalized size = 1.97 \begin {gather*} \frac {2 \, {\left (10000 \, x \log \relax (2)^{2} + 9800 \, x \log \relax (2) + 2401 \, x\right )}}{10000 \, \log \relax (2)^{2} + 9800 \, \log \relax (2) + 2401} - \frac {125 \, {\left (2 \, \log \relax (2) + 1\right )}}{100 \, x \log \relax (2) + 49 \, x - 250 \, \log \relax (2) - 125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 41, normalized size = 1.41
method | result | size |
risch | \(2 x -\frac {5 \ln \relax (2)}{2 \left (x \ln \relax (2)-\frac {5 \ln \relax (2)}{2}+\frac {49 x}{100}-\frac {5}{4}\right )}-\frac {5}{4 \left (x \ln \relax (2)-\frac {5 \ln \relax (2)}{2}+\frac {49 x}{100}-\frac {5}{4}\right )}\) | \(41\) |
default | \(2 x -\frac {25000 \ln \relax (2)^{2}+24750 \ln \relax (2)+6125}{\left (100 \ln \relax (2)+49\right ) \left (100 x \ln \relax (2)-250 \ln \relax (2)+49 x -125\right )}\) | \(43\) |
norman | \(\frac {\left (200 \ln \relax (2)+98\right ) x^{2}-\frac {125 \left (1200 \ln \relax (2)^{2}+1198 \ln \relax (2)+299\right )}{100 \ln \relax (2)+49}}{100 x \ln \relax (2)-250 \ln \relax (2)+49 x -125}\) | \(51\) |
gosper | \(\frac {20000 x^{2} \ln \relax (2)^{2}+19600 x^{2} \ln \relax (2)-150000 \ln \relax (2)^{2}+4802 x^{2}-149750 \ln \relax (2)-37375}{\left (100 x \ln \relax (2)-250 \ln \relax (2)+49 x -125\right ) \left (100 \ln \relax (2)+49\right )}\) | \(59\) |
meijerg | \(\frac {299 \left (100 \ln \relax (2)+49\right )^{2} x}{125 \left (10000 \ln \relax (2)^{2}+9800 \ln \relax (2)+2401\right ) \left (1+2 \ln \relax (2)\right )^{2} \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )}-\frac {1953125 \left (\frac {32 \ln \relax (2)^{2}}{25}+\frac {784 \ln \relax (2)}{625}+\frac {4802}{15625}\right ) \left (1+2 \ln \relax (2)\right ) \left (-\frac {x \left (100 \ln \relax (2)+49\right ) \left (-\frac {3 x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}+6\right )}{375 \left (1+2 \ln \relax (2)\right ) \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )}-2 \ln \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )\right )}{\left (10000 \ln \relax (2)^{2}+9800 \ln \relax (2)+2401\right ) \left (100 \ln \relax (2)+49\right )}+\frac {15625 \left (-\frac {32 \ln \relax (2)^{2}}{5}-\frac {792 \ln \relax (2)}{125}-\frac {196}{125}\right ) \left (\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right ) \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )}+\ln \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )\right )}{10000 \ln \relax (2)^{2}+9800 \ln \relax (2)+2401}+\frac {48 \ln \relax (2)^{2} \left (100 \ln \relax (2)+49\right )^{2} x}{5 \left (10000 \ln \relax (2)^{2}+9800 \ln \relax (2)+2401\right ) \left (1+2 \ln \relax (2)\right )^{2} \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )}+\frac {1198 \ln \relax (2) \left (100 \ln \relax (2)+49\right )^{2} x}{125 \left (10000 \ln \relax (2)^{2}+9800 \ln \relax (2)+2401\right ) \left (1+2 \ln \relax (2)\right )^{2} \left (1-\frac {x \left (100 \ln \relax (2)+49\right )}{125 \left (1+2 \ln \relax (2)\right )}\right )}\) | \(379\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 28, normalized size = 0.97 \begin {gather*} 2 \, x - \frac {125 \, {\left (2 \, \log \relax (2) + 1\right )}}{x {\left (100 \, \log \relax (2) + 49\right )} - 250 \, \log \relax (2) - 125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,\ln \relax (2)\,\left (9800\,x^2-49500\,x+74875\right )-24500\,x+4\,{\ln \relax (2)}^2\,\left (5000\,x^2-25000\,x+37500\right )+4802\,x^2+37375}{2\,\ln \relax (2)\,\left (4900\,x^2-24750\,x+31250\right )-12250\,x+4\,{\ln \relax (2)}^2\,\left (2500\,x^2-12500\,x+15625\right )+2401\,x^2+15625} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 26, normalized size = 0.90 \begin {gather*} 2 x + \frac {- 250 \log {\relax (2 )} - 125}{x \left (49 + 100 \log {\relax (2 )}\right ) - 250 \log {\relax (2 )} - 125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________