Optimal. Leaf size=19 \[ 1+e^{e^x}+\frac {6}{x^6}-\frac {25 x^2}{4} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {12, 14, 2282, 2194} \begin {gather*} \frac {6}{x^6}-\frac {25 x^2}{4}+e^{e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-72+2 e^{e^x+x} x^7-25 x^8}{x^7} \, dx\\ &=\frac {1}{2} \int \left (2 e^{e^x+x}+\frac {-72-25 x^8}{x^7}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-72-25 x^8}{x^7} \, dx+\int e^{e^x+x} \, dx\\ &=\frac {1}{2} \int \left (-\frac {72}{x^7}-25 x\right ) \, dx+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}+\frac {6}{x^6}-\frac {25 x^2}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.95 \begin {gather*} e^{e^x}+\frac {6}{x^6}-\frac {25 x^2}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 31, normalized size = 1.63 \begin {gather*} \frac {{\left (4 \, x^{6} e^{\left (x + e^{x}\right )} - {\left (25 \, x^{8} - 24\right )} e^{x}\right )} e^{\left (-x\right )}}{4 \, x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 31, normalized size = 1.63 \begin {gather*} -\frac {{\left (25 \, x^{8} e^{x} - 4 \, x^{6} e^{\left (x + e^{x}\right )} - 24 \, e^{x}\right )} e^{\left (-x\right )}}{4 \, x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.79
method | result | size |
default | \(-\frac {25 x^{2}}{4}+\frac {6}{x^{6}}+{\mathrm e}^{{\mathrm e}^{x}}\) | \(15\) |
risch | \(-\frac {25 x^{2}}{4}+\frac {6}{x^{6}}+{\mathrm e}^{{\mathrm e}^{x}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 0.74 \begin {gather*} -\frac {25}{4} \, x^{2} + \frac {6}{x^{6}} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.04, size = 14, normalized size = 0.74 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}-\frac {25\,x^2}{4}+\frac {6}{x^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.79 \begin {gather*} - \frac {25 x^{2}}{4} + e^{e^{x}} + \frac {6}{x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________