Optimal. Leaf size=22 \[ \log \left (\log \left (e^{-1+x \left (4+\frac {3}{4} e^{-x^2} x\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x^2} \left (8 e^{x^2}+3 x-3 x^3\right )}{2 \log \left (e^{-1+\frac {1}{4} e^{-x^2} \left (16 e^{x^2} x+3 x^2\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-x^2} \left (8 e^{x^2}+3 x-3 x^3\right )}{\log \left (e^{-1+\frac {1}{4} e^{-x^2} \left (16 e^{x^2} x+3 x^2\right )}\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {8}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )}-\frac {3 e^{-x^2} x \left (-1+x^2\right )}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {e^{-x^2} x \left (-1+x^2\right )}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx\right )+4 \int \frac {1}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx\\ &=-\left (\frac {3}{2} \int \left (-\frac {e^{-x^2} x}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )}+\frac {e^{-x^2} x^3}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )}\right ) \, dx\right )+4 \int \frac {1}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx\\ &=\frac {3}{2} \int \frac {e^{-x^2} x}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx-\frac {3}{2} \int \frac {e^{-x^2} x^3}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx+4 \int \frac {1}{\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 23, normalized size = 1.05 \begin {gather*} \log \left (\log \left (e^{-1+4 x+\frac {3}{4} e^{-x^2} x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 38, normalized size = 1.73 \begin {gather*} -x^{2} + \log \left (4 \, x - 1\right ) + \log \left (\frac {3 \, x^{2} + 4 \, {\left (4 \, x - 1\right )} e^{\left (x^{2}\right )}}{4 \, x - 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 1.18 \begin {gather*} -x^{2} + \log \left (3 \, x^{2} + 16 \, x e^{\left (x^{2}\right )} - 4 \, e^{\left (x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 25, normalized size = 1.14
method | result | size |
risch | \(\ln \left (\ln \left ({\mathrm e}^{\frac {x \left (16 \,{\mathrm e}^{x^{2}}+3 x \right ) {\mathrm e}^{-x^{2}}}{4}}\right )-1\right )\) | \(25\) |
default | \(-x^{2}+\ln \left (16 \,{\mathrm e}^{x^{2}} x +4 \left (\ln \left ({\mathrm e}^{\frac {\left (16 \,{\mathrm e}^{x^{2}} x +3 x^{2}\right ) {\mathrm e}^{-x^{2}}}{4}} {\mathrm e}^{-1}\right )-\frac {\left (16 \,{\mathrm e}^{x^{2}} x +3 x^{2}\right ) {\mathrm e}^{-x^{2}}}{4}\right ) {\mathrm e}^{x^{2}}+3 x^{2}\right )\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 39, normalized size = 1.77 \begin {gather*} -x^{2} + \log \left (4 \, x - 1\right ) + \log \left (\frac {3 \, x^{2} + 4 \, {\left (4 \, x - 1\right )} e^{\left (x^{2}\right )}}{4 \, {\left (4 \, x - 1\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.71, size = 17, normalized size = 0.77 \begin {gather*} \ln \left (16\,x+3\,x^2\,{\mathrm {e}}^{-x^2}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 22, normalized size = 1.00 \begin {gather*} 2 \log {\relax (x )} + \log {\left (e^{- x^{2}} + \frac {16 x - 4}{3 x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________