Optimal. Leaf size=21 \[ x \left (2 \left (e^{1+e^4+2 x}+x\right )+\log (5+x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 48, normalized size of antiderivative = 2.29, number of steps used = 10, number of rules used = 7, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.159, Rules used = {6742, 2176, 2194, 6688, 77, 2389, 2295} \begin {gather*} 2 x^2-e^{2 x+e^4+1}+e^{2 x+e^4+1} (2 x+1)+(x+5) \log (x+5)-5 \log (x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 77
Rule 2176
Rule 2194
Rule 2295
Rule 2389
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{1+e^4+2 x} (1+2 x)+\frac {21 x+4 x^2+5 \log (5+x)+x \log (5+x)}{5+x}\right ) \, dx\\ &=2 \int e^{1+e^4+2 x} (1+2 x) \, dx+\int \frac {21 x+4 x^2+5 \log (5+x)+x \log (5+x)}{5+x} \, dx\\ &=e^{1+e^4+2 x} (1+2 x)-2 \int e^{1+e^4+2 x} \, dx+\int \left (\frac {x (21+4 x)}{5+x}+\log (5+x)\right ) \, dx\\ &=-e^{1+e^4+2 x}+e^{1+e^4+2 x} (1+2 x)+\int \frac {x (21+4 x)}{5+x} \, dx+\int \log (5+x) \, dx\\ &=-e^{1+e^4+2 x}+e^{1+e^4+2 x} (1+2 x)+\int \left (1+4 x-\frac {5}{5+x}\right ) \, dx+\operatorname {Subst}(\int \log (x) \, dx,x,5+x)\\ &=-e^{1+e^4+2 x}+2 x^2+e^{1+e^4+2 x} (1+2 x)-5 \log (5+x)+(5+x) \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 1.00 \begin {gather*} x \left (2 \left (e^{1+e^4+2 x}+x\right )+\log (5+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 23, normalized size = 1.10 \begin {gather*} 2 \, x^{2} + 2 \, x e^{\left (2 \, x + e^{4} + 1\right )} + x \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 1.10 \begin {gather*} 2 \, x^{2} + 2 \, x e^{\left (2 \, x + e^{4} + 1\right )} + x \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 24, normalized size = 1.14
method | result | size |
risch | \(x \ln \left (5+x \right )+2 x^{2}+2 \,{\mathrm e}^{1+2 x +{\mathrm e}^{4}} x\) | \(24\) |
norman | \(x \ln \left (5+x \right )+2 x^{2}+2 \,{\mathrm e}^{1+2 x +{\mathrm e}^{4}} x\) | \(26\) |
default | \({\mathrm e}^{1+2 x +{\mathrm e}^{4}} \left (1+2 x +{\mathrm e}^{4}\right )-{\mathrm e}^{1+2 x +{\mathrm e}^{4}}-{\mathrm e}^{1+2 x +{\mathrm e}^{4}} {\mathrm e}^{4}+2 x^{2}-5 \ln \left (5+x \right )+\left (5+x \right ) \ln \left (5+x \right )-5\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x^{2} + 2 \, x e^{\left (2 \, x + e^{4} + 1\right )} - 10 \, e^{\left (e^{4} - 9\right )} E_{1}\left (-2 \, x - 10\right ) + {\left (x + 5\right )} \log \left (x + 5\right ) - 10 \, \int \frac {e^{\left (2 \, x + e^{4} + 1\right )}}{x + 5}\,{d x} - 5 \, \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 24, normalized size = 1.14 \begin {gather*} x\,\ln \left (x+5\right )+2\,x^2+2\,x\,{\mathrm {e}}^{2\,x}\,\mathrm {e}\,{\mathrm {e}}^{{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 24, normalized size = 1.14 \begin {gather*} 2 x^{2} + 2 x e^{2 x + 1 + e^{4}} + x \log {\left (x + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________