Optimal. Leaf size=19 \[ \frac {\left (4-2 e^x\right ) \left (8-e^x+x\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 29, normalized size of antiderivative = 1.53, number of steps used = 9, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {14, 2197, 2199, 2194, 2177, 2178} \begin {gather*} -2 e^x-\frac {20 e^x}{x}+\frac {2 e^{2 x}}{x}+\frac {32}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {32}{x^2}+\frac {2 e^{2 x} (-1+2 x)}{x^2}-\frac {2 e^x \left (-10+10 x+x^2\right )}{x^2}\right ) \, dx\\ &=\frac {32}{x}+2 \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx-2 \int \frac {e^x \left (-10+10 x+x^2\right )}{x^2} \, dx\\ &=\frac {32}{x}+\frac {2 e^{2 x}}{x}-2 \int \left (e^x-\frac {10 e^x}{x^2}+\frac {10 e^x}{x}\right ) \, dx\\ &=\frac {32}{x}+\frac {2 e^{2 x}}{x}-2 \int e^x \, dx+20 \int \frac {e^x}{x^2} \, dx-20 \int \frac {e^x}{x} \, dx\\ &=-2 e^x+\frac {32}{x}-\frac {20 e^x}{x}+\frac {2 e^{2 x}}{x}-20 \text {Ei}(x)+20 \int \frac {e^x}{x} \, dx\\ &=-2 e^x+\frac {32}{x}-\frac {20 e^x}{x}+\frac {2 e^{2 x}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 1.11 \begin {gather*} -\frac {2 \left (-16-e^{2 x}+e^x (10+x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 19, normalized size = 1.00 \begin {gather*} -\frac {2 \, {\left ({\left (x + 10\right )} e^{x} - e^{\left (2 \, x\right )} - 16\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 1.11 \begin {gather*} -\frac {2 \, {\left (x e^{x} - e^{\left (2 \, x\right )} + 10 \, e^{x} - 16\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.16
method | result | size |
norman | \(\frac {32+2 \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x -20 \,{\mathrm e}^{x}}{x}\) | \(22\) |
risch | \(\frac {32}{x}+\frac {2 \,{\mathrm e}^{2 x}}{x}-\frac {2 \left (x +10\right ) {\mathrm e}^{x}}{x}\) | \(26\) |
default | \(\frac {32}{x}-\frac {20 \,{\mathrm e}^{x}}{x}+\frac {2 \,{\mathrm e}^{2 x}}{x}-2 \,{\mathrm e}^{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 34, normalized size = 1.79 \begin {gather*} \frac {32}{x} + 4 \, {\rm Ei}\left (2 \, x\right ) - 20 \, {\rm Ei}\relax (x) - 2 \, e^{x} + 20 \, \Gamma \left (-1, -x\right ) - 4 \, \Gamma \left (-1, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 21, normalized size = 1.11 \begin {gather*} \frac {2\,{\mathrm {e}}^{2\,x}-20\,{\mathrm {e}}^x+32}{x}-2\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 27, normalized size = 1.42 \begin {gather*} \frac {32}{x} + \frac {2 x e^{2 x} + \left (- 2 x^{2} - 20 x\right ) e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________