Optimal. Leaf size=24 \[ e^x \left (27+x-\frac {e^4 x^2}{4 (4-x)}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 58, normalized size of antiderivative = 2.42, number of steps used = 10, number of rules used = 7, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {27, 12, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -\frac {1}{4} \left (4+e^4\right ) e^x (4-x)+\frac {1}{4} \left (128+9 e^4\right ) e^x-\frac {1}{4} \left (4+e^4\right ) e^x-\frac {4 e^{x+4}}{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (1792-832 x+80 x^2+4 x^3+e^4 \left (-8 x-3 x^2+x^3\right )\right )}{4 (-4+x)^2} \, dx\\ &=\frac {1}{4} \int \frac {e^x \left (1792-832 x+80 x^2+4 x^3+e^4 \left (-8 x-3 x^2+x^3\right )\right )}{(-4+x)^2} \, dx\\ &=\frac {1}{4} \int \left (e^x \left (128+9 e^4\right )-\frac {16 e^{4+x}}{(-4+x)^2}+\frac {16 e^{4+x}}{-4+x}+e^x \left (4+e^4\right ) (-4+x)\right ) \, dx\\ &=-\left (4 \int \frac {e^{4+x}}{(-4+x)^2} \, dx\right )+4 \int \frac {e^{4+x}}{-4+x} \, dx+\frac {1}{4} \left (4+e^4\right ) \int e^x (-4+x) \, dx+\frac {1}{4} \left (128+9 e^4\right ) \int e^x \, dx\\ &=\frac {1}{4} e^x \left (128+9 e^4\right )-\frac {4 e^{4+x}}{4-x}-\frac {1}{4} e^x \left (4+e^4\right ) (4-x)+4 e^8 \text {Ei}(-4+x)-4 \int \frac {e^{4+x}}{-4+x} \, dx+\frac {1}{4} \left (-4-e^4\right ) \int e^x \, dx\\ &=-\frac {1}{4} e^x \left (4+e^4\right )+\frac {1}{4} e^x \left (128+9 e^4\right )-\frac {4 e^{4+x}}{4-x}-\frac {1}{4} e^x \left (4+e^4\right ) (4-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 1.08 \begin {gather*} \frac {e^x \left (-432+92 x+\left (4+e^4\right ) x^2\right )}{4 (-4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 25, normalized size = 1.04 \begin {gather*} \frac {{\left (x^{2} e^{4} + 4 \, x^{2} + 92 \, x - 432\right )} e^{x}}{4 \, {\left (x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 32, normalized size = 1.33 \begin {gather*} \frac {x^{2} e^{\left (x + 4\right )} + 4 \, x^{2} e^{x} + 92 \, x e^{x} - 432 \, e^{x}}{4 \, {\left (x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 26, normalized size = 1.08
method | result | size |
gosper | \(\frac {\left (x^{2} {\mathrm e}^{4}+4 x^{2}+92 x -432\right ) {\mathrm e}^{x}}{4 x -16}\) | \(26\) |
risch | \(\frac {\left (x^{2} {\mathrm e}^{4}+4 x^{2}+92 x -432\right ) {\mathrm e}^{x}}{4 x -16}\) | \(26\) |
norman | \(\frac {\left (1+\frac {{\mathrm e}^{4}}{4}\right ) x^{2} {\mathrm e}^{x}+23 \,{\mathrm e}^{x} x -108 \,{\mathrm e}^{x}}{x -4}\) | \(29\) |
default | \(\frac {{\mathrm e}^{4} \left ({\mathrm e}^{x} x +7 \,{\mathrm e}^{x}-\frac {64 \,{\mathrm e}^{x}}{x -4}-112 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )}{4}+27 \,{\mathrm e}^{x}+{\mathrm e}^{x} x -2 \,{\mathrm e}^{4} \left (-\frac {4 \,{\mathrm e}^{x}}{x -4}-5 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )-\frac {3 \,{\mathrm e}^{4} \left ({\mathrm e}^{x}-\frac {16 \,{\mathrm e}^{x}}{x -4}-24 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )}{4}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x^{3} {\left (e^{4} + 4\right )} - 4 \, x^{2} {\left (e^{4} - 19\right )} - 800 \, x\right )} e^{x}}{4 \, {\left (x^{2} - 8 \, x + 16\right )}} - \frac {448 \, e^{4} E_{2}\left (-x + 4\right )}{x - 4} - \frac {1}{4} \, \int \frac {64 \, {\left (x + 50\right )} e^{x}}{x^{3} - 12 \, x^{2} + 48 \, x - 64}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 26, normalized size = 1.08 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (92\,x+x^2\,{\mathrm {e}}^4+4\,x^2-432\right )}{4\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.00 \begin {gather*} \frac {\left (4 x^{2} + x^{2} e^{4} + 92 x - 432\right ) e^{x}}{4 x - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________