Optimal. Leaf size=25 \[ 5-x+\frac {\log (5+x)}{5 \left (-3-x+\frac {1}{1+x}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.55, antiderivative size = 570, normalized size of antiderivative = 22.80, number of steps used = 66, number of rules used = 16, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {6688, 12, 6742, 740, 800, 632, 31, 822, 1646, 1628, 2418, 2395, 36, 2394, 2393, 2391} \begin {gather*} \frac {51 (3 x+4)}{70 \left (x^2+4 x+2\right )}-\frac {213 (4 x+3)}{35 \left (x^2+4 x+2\right )}+\frac {117 (13 x+8)}{14 \left (x^2+4 x+2\right )}-\frac {43 (22 x+13)}{5 \left (x^2+4 x+2\right )}+\frac {13 (75 x+44)}{7 \left (x^2+4 x+2\right )}-\frac {2 (128 x+75)}{7 \left (x^2+4 x+2\right )}-x-\frac {\left (2-\sqrt {2}\right ) \log (x+5)}{20 \left (x-\sqrt {2}+2\right )}-\frac {\left (2+\sqrt {2}\right ) \log (x+5)}{20 \left (x+\sqrt {2}+2\right )}-\frac {\left (2-\sqrt {2}\right ) \log (x+5)}{20 \left (3+\sqrt {2}\right )}-\frac {\left (2+\sqrt {2}\right ) \log (x+5)}{20 \left (3-\sqrt {2}\right )}+\frac {4}{35} \log (x+5)+\frac {51 \left (8+9 \sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )}{1960}+\frac {\left (2-\sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )}{20 \left (3+\sqrt {2}\right )}-\frac {213}{490} \left (10-\sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )+\frac {117}{392} \left (100-59 \sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )-\frac {43}{70} \left (125-86 \sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )+\frac {13}{196} \left (1152-811 \sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )-\frac {1}{49} \left (1244-879 \sqrt {2}\right ) \log \left (x-\sqrt {2}+2\right )-\frac {1}{49} \left (1244+879 \sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )+\frac {13}{196} \left (1152+811 \sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )-\frac {43}{70} \left (125+86 \sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )+\frac {117}{392} \left (100+59 \sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )-\frac {213}{490} \left (10+\sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )+\frac {\left (2+\sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )}{20 \left (3-\sqrt {2}\right )}+\frac {51 \left (8-9 \sqrt {2}\right ) \log \left (x+\sqrt {2}+2\right )}{1960} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 36
Rule 632
Rule 740
Rule 800
Rule 822
Rule 1628
Rule 1646
Rule 2391
Rule 2393
Rule 2394
Rule 2395
Rule 2418
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-102-426 x-585 x^2-301 x^3-65 x^4-5 x^5+\left (10+12 x+7 x^2+x^3\right ) \log (5+x)}{5 (5+x) \left (2+4 x+x^2\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-102-426 x-585 x^2-301 x^3-65 x^4-5 x^5+\left (10+12 x+7 x^2+x^3\right ) \log (5+x)}{(5+x) \left (2+4 x+x^2\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {102}{(5+x) \left (2+4 x+x^2\right )^2}-\frac {426 x}{(5+x) \left (2+4 x+x^2\right )^2}-\frac {585 x^2}{(5+x) \left (2+4 x+x^2\right )^2}-\frac {301 x^3}{(5+x) \left (2+4 x+x^2\right )^2}-\frac {65 x^4}{(5+x) \left (2+4 x+x^2\right )^2}-\frac {5 x^5}{(5+x) \left (2+4 x+x^2\right )^2}+\frac {\left (2+2 x+x^2\right ) \log (5+x)}{\left (2+4 x+x^2\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {\left (2+2 x+x^2\right ) \log (5+x)}{\left (2+4 x+x^2\right )^2} \, dx-13 \int \frac {x^4}{(5+x) \left (2+4 x+x^2\right )^2} \, dx-\frac {102}{5} \int \frac {1}{(5+x) \left (2+4 x+x^2\right )^2} \, dx-\frac {301}{5} \int \frac {x^3}{(5+x) \left (2+4 x+x^2\right )^2} \, dx-\frac {426}{5} \int \frac {x}{(5+x) \left (2+4 x+x^2\right )^2} \, dx-117 \int \frac {x^2}{(5+x) \left (2+4 x+x^2\right )^2} \, dx-\int \frac {x^5}{(5+x) \left (2+4 x+x^2\right )^2} \, dx\\ &=\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {1}{8} \int \frac {-\frac {1760}{7}-\frac {2832 x}{7}+32 x^2-8 x^3}{(5+x) \left (2+4 x+x^2\right )} \, dx+\frac {1}{5} \int \left (-\frac {2 x \log (5+x)}{\left (2+4 x+x^2\right )^2}+\frac {\log (5+x)}{2+4 x+x^2}\right ) \, dx+\frac {51}{140} \int \frac {22+6 x}{(5+x) \left (2+4 x+x^2\right )} \, dx+\frac {213}{140} \int \frac {-40-16 x}{(5+x) \left (2+4 x+x^2\right )} \, dx+\frac {13}{8} \int \frac {\frac {520}{7}+\frac {824 x}{7}-8 x^2}{(5+x) \left (2+4 x+x^2\right )} \, dx+\frac {301}{40} \int \frac {-\frac {160}{7}-\frac {232 x}{7}}{(5+x) \left (2+4 x+x^2\right )} \, dx+\frac {117}{8} \int \frac {\frac {60}{7}+\frac {52 x}{7}}{(5+x) \left (2+4 x+x^2\right )} \, dx\\ &=\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {1}{8} \int \left (-8+\frac {25000}{49 (5+x)}-\frac {32 (365+622 x)}{49 \left (2+4 x+x^2\right )}\right ) \, dx+\frac {1}{5} \int \frac {\log (5+x)}{2+4 x+x^2} \, dx+\frac {51}{140} \int \left (-\frac {8}{7 (5+x)}+\frac {2 (17+4 x)}{7 \left (2+4 x+x^2\right )}\right ) \, dx-\frac {2}{5} \int \frac {x \log (5+x)}{\left (2+4 x+x^2\right )^2} \, dx+\frac {213}{140} \int \left (\frac {40}{7 (5+x)}-\frac {8 (9+5 x)}{7 \left (2+4 x+x^2\right )}\right ) \, dx+\frac {13}{8} \int \left (-\frac {5000}{49 (5+x)}+\frac {8 (341+576 x)}{49 \left (2+4 x+x^2\right )}\right ) \, dx+\frac {301}{40} \int \left (\frac {1000}{49 (5+x)}-\frac {8 (78+125 x)}{49 \left (2+4 x+x^2\right )}\right ) \, dx+\frac {117}{8} \int \left (-\frac {200}{49 (5+x)}+\frac {4 (41+50 x)}{49 \left (2+4 x+x^2\right )}\right ) \, dx\\ &=-x+\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {4}{35} \log (5+x)-\frac {4}{49} \int \frac {365+622 x}{2+4 x+x^2} \, dx+\frac {51}{490} \int \frac {17+4 x}{2+4 x+x^2} \, dx+\frac {1}{5} \int \left (-\frac {\log (5+x)}{\sqrt {2} \left (-4+2 \sqrt {2}-2 x\right )}-\frac {\log (5+x)}{\sqrt {2} \left (4+2 \sqrt {2}+2 x\right )}\right ) \, dx+\frac {13}{49} \int \frac {341+576 x}{2+4 x+x^2} \, dx-\frac {2}{5} \int \left (\frac {\left (-4+2 \sqrt {2}\right ) \log (5+x)}{4 \left (-4+2 \sqrt {2}-2 x\right )^2}-\frac {\log (5+x)}{2 \sqrt {2} \left (-4+2 \sqrt {2}-2 x\right )}+\frac {\left (-4-2 \sqrt {2}\right ) \log (5+x)}{4 \left (4+2 \sqrt {2}+2 x\right )^2}-\frac {\log (5+x)}{2 \sqrt {2} \left (4+2 \sqrt {2}+2 x\right )}\right ) \, dx+\frac {117}{98} \int \frac {41+50 x}{2+4 x+x^2} \, dx-\frac {43}{35} \int \frac {78+125 x}{2+4 x+x^2} \, dx-\frac {426}{245} \int \frac {9+5 x}{2+4 x+x^2} \, dx\\ &=-x+\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {4}{35} \log (5+x)-\frac {1}{49} \left (1244-879 \sqrt {2}\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx+\frac {1}{196} \left (13 \left (1152-811 \sqrt {2}\right )\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx-\frac {1}{70} \left (43 \left (125-86 \sqrt {2}\right )\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx+\frac {1}{392} \left (117 \left (100-59 \sqrt {2}\right )\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx+\frac {\left (51 \left (8-9 \sqrt {2}\right )\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx}{1960}-\frac {1}{490} \left (213 \left (10-\sqrt {2}\right )\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx-\frac {1}{5} \left (-2+\sqrt {2}\right ) \int \frac {\log (5+x)}{\left (-4+2 \sqrt {2}-2 x\right )^2} \, dx+\frac {1}{5} \left (2+\sqrt {2}\right ) \int \frac {\log (5+x)}{\left (4+2 \sqrt {2}+2 x\right )^2} \, dx-\frac {1}{490} \left (213 \left (10+\sqrt {2}\right )\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx+\frac {\left (51 \left (8+9 \sqrt {2}\right )\right ) \int \frac {1}{2-\sqrt {2}+x} \, dx}{1960}+\frac {1}{392} \left (117 \left (100+59 \sqrt {2}\right )\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx-\frac {1}{70} \left (43 \left (125+86 \sqrt {2}\right )\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx+\frac {1}{196} \left (13 \left (1152+811 \sqrt {2}\right )\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx-\frac {1}{49} \left (1244+879 \sqrt {2}\right ) \int \frac {1}{2+\sqrt {2}+x} \, dx\\ &=-x+\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {4}{35} \log (5+x)-\frac {\left (2-\sqrt {2}\right ) \log (5+x)}{20 \left (2-\sqrt {2}+x\right )}-\frac {\left (2+\sqrt {2}\right ) \log (5+x)}{20 \left (2+\sqrt {2}+x\right )}-\frac {1}{49} \left (1244-879 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {13}{196} \left (1152-811 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {43}{70} \left (125-86 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {117}{392} \left (100-59 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {213}{490} \left (10-\sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {51 \left (8+9 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )}{1960}+\frac {51 \left (8-9 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )}{1960}-\frac {213}{490} \left (10+\sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {117}{392} \left (100+59 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {43}{70} \left (125+86 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {13}{196} \left (1152+811 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {1}{49} \left (1244+879 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {1}{10} \left (2-\sqrt {2}\right ) \int \frac {1}{\left (-4+2 \sqrt {2}-2 x\right ) (5+x)} \, dx+\frac {1}{10} \left (2+\sqrt {2}\right ) \int \frac {1}{(5+x) \left (4+2 \sqrt {2}+2 x\right )} \, dx\\ &=-x+\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {4}{35} \log (5+x)-\frac {\left (2-\sqrt {2}\right ) \log (5+x)}{20 \left (2-\sqrt {2}+x\right )}-\frac {\left (2+\sqrt {2}\right ) \log (5+x)}{20 \left (2+\sqrt {2}+x\right )}-\frac {1}{49} \left (1244-879 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {13}{196} \left (1152-811 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {43}{70} \left (125-86 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {117}{392} \left (100-59 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {213}{490} \left (10-\sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {51 \left (8+9 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )}{1960}+\frac {51 \left (8-9 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )}{1960}-\frac {213}{490} \left (10+\sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {117}{392} \left (100+59 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {43}{70} \left (125+86 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {13}{196} \left (1152+811 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {1}{49} \left (1244+879 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {\left (2-\sqrt {2}\right ) \int \frac {1}{5+x} \, dx}{20 \left (3+\sqrt {2}\right )}-\frac {\left (2-\sqrt {2}\right ) \int \frac {1}{-4+2 \sqrt {2}-2 x} \, dx}{10 \left (3+\sqrt {2}\right )}--\frac {\left (-2-\sqrt {2}\right ) \int \frac {1}{4+2 \sqrt {2}+2 x} \, dx}{5 \left (-6+2 \sqrt {2}\right )}+\frac {\left (2+\sqrt {2}\right ) \int \frac {1}{5+x} \, dx}{10 \left (-6+2 \sqrt {2}\right )}\\ &=-x+\frac {51 (4+3 x)}{70 \left (2+4 x+x^2\right )}-\frac {213 (3+4 x)}{35 \left (2+4 x+x^2\right )}+\frac {117 (8+13 x)}{14 \left (2+4 x+x^2\right )}-\frac {43 (13+22 x)}{5 \left (2+4 x+x^2\right )}+\frac {13 (44+75 x)}{7 \left (2+4 x+x^2\right )}-\frac {2 (75+128 x)}{7 \left (2+4 x+x^2\right )}+\frac {4}{35} \log (5+x)+\frac {\left (1+\sqrt {2}\right ) \log (5+x)}{10 \left (2-3 \sqrt {2}\right )}-\frac {\left (2-\sqrt {2}\right ) \log (5+x)}{20 \left (3+\sqrt {2}\right )}-\frac {\left (2-\sqrt {2}\right ) \log (5+x)}{20 \left (2-\sqrt {2}+x\right )}-\frac {\left (2+\sqrt {2}\right ) \log (5+x)}{20 \left (2+\sqrt {2}+x\right )}-\frac {1}{49} \left (1244-879 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {13}{196} \left (1152-811 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {43}{70} \left (125-86 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {117}{392} \left (100-59 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )-\frac {213}{490} \left (10-\sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )+\frac {\left (2-\sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )}{20 \left (3+\sqrt {2}\right )}+\frac {51 \left (8+9 \sqrt {2}\right ) \log \left (2-\sqrt {2}+x\right )}{1960}+\frac {51 \left (8-9 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )}{1960}-\frac {\left (1+\sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )}{10 \left (2-3 \sqrt {2}\right )}-\frac {213}{490} \left (10+\sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {117}{392} \left (100+59 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {43}{70} \left (125+86 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )+\frac {13}{196} \left (1152+811 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )-\frac {1}{49} \left (1244+879 \sqrt {2}\right ) \log \left (2+\sqrt {2}+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 29, normalized size = 1.16 \begin {gather*} \frac {1}{5} \left (-5 (5+x)-\frac {(1+x) \log (5+x)}{2+4 x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 34, normalized size = 1.36 \begin {gather*} -\frac {5 \, x^{3} + 20 \, x^{2} + {\left (x + 1\right )} \log \left (x + 5\right ) + 10 \, x}{5 \, {\left (x^{2} + 4 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 0.92 \begin {gather*} -x - \frac {{\left (x + 1\right )} \log \left (x + 5\right )}{5 \, {\left (x^{2} + 4 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.96
method | result | size |
risch | \(-\frac {\left (x +1\right ) \ln \left (5+x \right )}{5 \left (x^{2}+4 x +2\right )}-x\) | \(24\) |
norman | \(\frac {-\frac {7 x^{2}}{2}-\frac {\ln \left (5+x \right )}{10}+\frac {\ln \left (5+x \right ) x^{2}}{20}-x^{3}+1}{x^{2}+4 x +2}-\frac {\ln \left (5+x \right )}{20}\) | \(46\) |
derivativedivides | \(-\frac {\ln \left (5+x \right ) \left (7 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right ) \left (5+x \right )^{2}-7 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right ) \left (5+x \right )^{2}-42 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right ) \left (5+x \right )+42 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right ) \left (5+x \right )+49 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right )-49 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right )+16 \left (5+x \right )^{2}-340-68 x \right )}{140 \left (\left (5+x \right )^{2}-23-6 x \right )}+\frac {\sqrt {2}\, \ln \left (5+x \right ) \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right )}{20}-\frac {\sqrt {2}\, \ln \left (5+x \right ) \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right )}{20}-5-x +\frac {4 \ln \left (5+x \right )}{35}\) | \(234\) |
default | \(-\frac {\ln \left (5+x \right ) \left (7 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right ) \left (5+x \right )^{2}-7 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right ) \left (5+x \right )^{2}-42 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right ) \left (5+x \right )+42 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right ) \left (5+x \right )+49 \sqrt {2}\, \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right )-49 \sqrt {2}\, \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right )+16 \left (5+x \right )^{2}-340-68 x \right )}{140 \left (\left (5+x \right )^{2}-23-6 x \right )}+\frac {\sqrt {2}\, \ln \left (5+x \right ) \ln \left (\frac {-2+\sqrt {2}-x}{3+\sqrt {2}}\right )}{20}-\frac {\sqrt {2}\, \ln \left (5+x \right ) \ln \left (\frac {2+\sqrt {2}+x}{-3+\sqrt {2}}\right )}{20}-5-x +\frac {4 \ln \left (5+x \right )}{35}\) | \(234\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 138, normalized size = 5.52 \begin {gather*} -x - \frac {{\left (4 \, x^{2} + 23 \, x + 15\right )} \log \left (x + 5\right )}{35 \, {\left (x^{2} + 4 \, x + 2\right )}} - \frac {2 \, {\left (128 \, x + 75\right )}}{7 \, {\left (x^{2} + 4 \, x + 2\right )}} + \frac {13 \, {\left (75 \, x + 44\right )}}{7 \, {\left (x^{2} + 4 \, x + 2\right )}} - \frac {43 \, {\left (22 \, x + 13\right )}}{5 \, {\left (x^{2} + 4 \, x + 2\right )}} + \frac {117 \, {\left (13 \, x + 8\right )}}{14 \, {\left (x^{2} + 4 \, x + 2\right )}} - \frac {213 \, {\left (4 \, x + 3\right )}}{35 \, {\left (x^{2} + 4 \, x + 2\right )}} + \frac {51 \, {\left (3 \, x + 4\right )}}{70 \, {\left (x^{2} + 4 \, x + 2\right )}} + \frac {4}{35} \, \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 25, normalized size = 1.00 \begin {gather*} -x-\frac {\ln \left (x+5\right )\,\left (\frac {x}{5}+\frac {1}{5}\right )}{x^2+4\,x+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.80 \begin {gather*} - x + \frac {\left (- x - 1\right ) \log {\left (x + 5 \right )}}{5 x^{2} + 20 x + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________