Optimal. Leaf size=22 \[ \frac {e^{e^{-4+2 x}}}{5-x-4 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 42, normalized size of antiderivative = 1.91, number of steps used = 1, number of rules used = 1, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2288} \begin {gather*} \frac {e^{e^{2 x-4}} \left (-4 x^2-x+5\right )}{16 x^4+8 x^3-39 x^2-10 x+25} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{e^{-4+2 x}} \left (5-x-4 x^2\right )}{25-10 x-39 x^2+8 x^3+16 x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.95 \begin {gather*} -\frac {e^{e^{-4+2 x}}}{-5+x+4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 19, normalized size = 0.86 \begin {gather*} -\frac {e^{\left (e^{\left (2 \, x - 4\right )}\right )}}{4 \, x^{2} + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, {\left (4 \, x^{2} + x - 5\right )} e^{\left (2 \, x - 4\right )} - 8 \, x - 1\right )} e^{\left (e^{\left (2 \, x - 4\right )}\right )}}{16 \, x^{4} + 8 \, x^{3} - 39 \, x^{2} - 10 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 20, normalized size = 0.91
method | result | size |
norman | \(-\frac {{\mathrm e}^{{\mathrm e}^{2 x -4}}}{4 x^{2}+x -5}\) | \(20\) |
risch | \(-\frac {{\mathrm e}^{{\mathrm e}^{2 x -4}}}{4 x^{2}+x -5}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 19, normalized size = 0.86 \begin {gather*} -\frac {e^{\left (e^{\left (2 \, x - 4\right )}\right )}}{4 \, x^{2} + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 20, normalized size = 0.91 \begin {gather*} -\frac {{\mathrm {e}}^{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-4}}}{4\,x^2+x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.77 \begin {gather*} - \frac {e^{e^{2 x - 4}}}{4 x^{2} + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________