Optimal. Leaf size=21 \[ \frac {5 \log (x) \left (e^{5-x}+\log (5 x)\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 30, normalized size of antiderivative = 1.43, number of steps used = 9, number of rules used = 6, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 14, 2288, 2304, 2303, 2366} \begin {gather*} \frac {5 \log (5 x) \log (x)}{2 x}+\frac {5 e^{5-x} \log (x)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2303
Rule 2304
Rule 2366
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {5 e^{5-x}+\left (5+e^{5-x} (-5-5 x)\right ) \log (x)+(5-5 \log (x)) \log (5 x)}{x^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {5 e^{5-x} (-1+\log (x)+x \log (x))}{x^2}-\frac {5 (-\log (x)-\log (5 x)+\log (x) \log (5 x))}{x^2}\right ) \, dx\\ &=-\left (\frac {5}{2} \int \frac {e^{5-x} (-1+\log (x)+x \log (x))}{x^2} \, dx\right )-\frac {5}{2} \int \frac {-\log (x)-\log (5 x)+\log (x) \log (5 x)}{x^2} \, dx\\ &=\frac {5 e^{5-x} \log (x)}{2 x}-\frac {5}{2} \int \left (-\frac {\log (x)}{x^2}+\frac {(-1+\log (x)) \log (5 x)}{x^2}\right ) \, dx\\ &=\frac {5 e^{5-x} \log (x)}{2 x}+\frac {5}{2} \int \frac {\log (x)}{x^2} \, dx-\frac {5}{2} \int \frac {(-1+\log (x)) \log (5 x)}{x^2} \, dx\\ &=-\frac {5}{2 x}-\frac {5 \log (x)}{2 x}+\frac {5 e^{5-x} \log (x)}{2 x}+\frac {5 \log (x) \log (5 x)}{2 x}-\frac {5}{2} \int \frac {\log (x)}{x^2} \, dx\\ &=\frac {5 e^{5-x} \log (x)}{2 x}+\frac {5 \log (x) \log (5 x)}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.92, size = 26, normalized size = 1.24 \begin {gather*} \frac {5 e^{-x} \log (x) \left (e^5+e^x \log (5 x)\right )}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 22, normalized size = 1.05 \begin {gather*} \frac {5 \, {\left ({\left (e^{\left (-x + 5\right )} + \log \relax (5)\right )} \log \relax (x) + \log \relax (x)^{2}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.14 \begin {gather*} \frac {5 \, {\left (e^{\left (-x + 5\right )} \log \relax (x) + \log \relax (5) \log \relax (x) + \log \relax (x)^{2}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 31, normalized size = 1.48
method | result | size |
risch | \(\frac {5 \ln \relax (x )^{2}}{2 x}+\frac {5 \left (2 \ln \relax (5)+2 \,{\mathrm e}^{5-x}\right ) \ln \relax (x )}{4 x}\) | \(31\) |
default | \(\frac {5 \ln \relax (x ) \ln \relax (5)}{2 x}+\frac {5 \ln \relax (5)}{2 x}+\frac {5 \ln \relax (x )^{2}}{2 x}+\frac {5 \ln \relax (x )}{2 x}+\frac {5 \ln \relax (x ) {\mathrm e}^{5-x}}{2 x}-\frac {5 \ln \left (5 x \right )}{2 x}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {5}{2} \, e^{5} \Gamma \left (-1, x\right ) + \frac {5 \, {\left ({\left (\log \relax (5) + 1\right )} \log \relax (x) + e^{\left (-x + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 1\right )}}{2 \, x} - \frac {5 \, \log \relax (x)}{2 \, x} - \frac {5}{2 \, x} - \frac {5}{2} \, \int \frac {e^{\left (-x + 5\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 24, normalized size = 1.14 \begin {gather*} \frac {5\,{\mathrm {e}}^{-x}\,\ln \relax (x)\,\left ({\mathrm {e}}^5+{\mathrm {e}}^x\,\ln \relax (x)+{\mathrm {e}}^x\,\ln \relax (5)\right )}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 34, normalized size = 1.62 \begin {gather*} \frac {5 e^{5 - x} \log {\relax (x )}}{2 x} + \frac {5 \log {\relax (x )}^{2}}{2 x} + \frac {5 \log {\relax (5 )} \log {\relax (x )}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________