Optimal. Leaf size=24 \[ -4-\log \left (5+e^x+x\right )+\log \left (4 \left (-5-x+(10+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x+x^2+e^x \left (-76-17 x-x^2\right )}{475+190 x+24 x^2+x^3+e^x \left (95+19 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+x^2+e^x \left (-76-17 x-x^2\right )}{\left (5+e^x+x\right ) \left (95+19 x+x^2\right )} \, dx\\ &=\int \left (\frac {4+x}{5+e^x+x}+\frac {-76-17 x-x^2}{95+19 x+x^2}\right ) \, dx\\ &=\int \frac {4+x}{5+e^x+x} \, dx+\int \frac {-76-17 x-x^2}{95+19 x+x^2} \, dx\\ &=\int \left (\frac {4}{5+e^x+x}+\frac {x}{5+e^x+x}\right ) \, dx+\int \left (-1+\frac {19+2 x}{95+19 x+x^2}\right ) \, dx\\ &=-x+4 \int \frac {1}{5+e^x+x} \, dx+\int \frac {x}{5+e^x+x} \, dx+\int \frac {19+2 x}{95+19 x+x^2} \, dx\\ &=-x+\log \left (95+19 x+x^2\right )+4 \int \frac {1}{5+e^x+x} \, dx+\int \frac {x}{5+e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 0.79 \begin {gather*} -\log \left (5+e^x+x\right )+\log \left (95+19 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 18, normalized size = 0.75 \begin {gather*} \log \left (x^{2} + 19 \, x + 95\right ) - \log \left (x + e^{x} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 0.92 \begin {gather*} \log \left (x^{2} + 19 \, x + 95\right ) - \log \left (-x - e^{x} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.79
method | result | size |
norman | \(-\ln \left ({\mathrm e}^{x}+5+x \right )+\ln \left (x^{2}+19 x +95\right )\) | \(19\) |
risch | \(-\ln \left ({\mathrm e}^{x}+5+x \right )+\ln \left (x^{2}+19 x +95\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 18, normalized size = 0.75 \begin {gather*} \log \left (x^{2} + 19 \, x + 95\right ) - \log \left (x + e^{x} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.52, size = 18, normalized size = 0.75 \begin {gather*} \ln \left (x^2+19\,x+95\right )-\ln \left (x+{\mathrm {e}}^x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.71 \begin {gather*} - \log {\left (x + e^{x} + 5 \right )} + \log {\left (x^{2} + 19 x + 95 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________