Optimal. Leaf size=23 \[ e^{-4 x-(1+x)^2} \left (x+\log \left (\frac {x}{\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.55, antiderivative size = 35, normalized size of antiderivative = 1.52, number of steps used = 21, number of rules used = 8, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {6742, 2234, 2205, 2240, 2241, 2236, 2555, 12} \begin {gather*} e^{-x^2-6 x-1} x+e^{-x^2-6 x-1} \log \left (\frac {x}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2234
Rule 2236
Rule 2240
Rule 2241
Rule 2555
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-1-6 x-x^2} \left (-1+\log (x)+x \log (x)-6 x^2 \log (x)-2 x^3 \log (x)\right )}{x \log (x)}-2 e^{-1-6 x-x^2} (3+x) \log \left (\frac {x}{\log (x)}\right )\right ) \, dx\\ &=-\left (2 \int e^{-1-6 x-x^2} (3+x) \log \left (\frac {x}{\log (x)}\right ) \, dx\right )+\int \frac {e^{-1-6 x-x^2} \left (-1+\log (x)+x \log (x)-6 x^2 \log (x)-2 x^3 \log (x)\right )}{x \log (x)} \, dx\\ &=e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )+2 \int -\frac {e^{-1-6 x-x^2} (-1+\log (x))}{2 x \log (x)} \, dx+\int \left (\frac {e^{-1-6 x-x^2} \left (1+x-6 x^2-2 x^3\right )}{x}-\frac {e^{-1-6 x-x^2}}{x \log (x)}\right ) \, dx\\ &=e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )+\int \frac {e^{-1-6 x-x^2} \left (1+x-6 x^2-2 x^3\right )}{x} \, dx-\int \frac {e^{-1-6 x-x^2}}{x \log (x)} \, dx-\int \frac {e^{-1-6 x-x^2} (-1+\log (x))}{x \log (x)} \, dx\\ &=e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )+\int \left (e^{-1-6 x-x^2}+\frac {e^{-1-6 x-x^2}}{x}-6 e^{-1-6 x-x^2} x-2 e^{-1-6 x-x^2} x^2\right ) \, dx-\int \left (\frac {e^{-1-6 x-x^2}}{x}-\frac {e^{-1-6 x-x^2}}{x \log (x)}\right ) \, dx-\int \frac {e^{-1-6 x-x^2}}{x \log (x)} \, dx\\ &=e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )-2 \int e^{-1-6 x-x^2} x^2 \, dx-6 \int e^{-1-6 x-x^2} x \, dx+\int e^{-1-6 x-x^2} \, dx\\ &=3 e^{-1-6 x-x^2}+e^{-1-6 x-x^2} x+e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )+6 \int e^{-1-6 x-x^2} x \, dx+18 \int e^{-1-6 x-x^2} \, dx+e^8 \int e^{-\frac {1}{4} (-6-2 x)^2} \, dx-\int e^{-1-6 x-x^2} \, dx\\ &=e^{-1-6 x-x^2} x+\frac {1}{2} e^8 \sqrt {\pi } \text {erf}(3+x)+e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )-18 \int e^{-1-6 x-x^2} \, dx-e^8 \int e^{-\frac {1}{4} (-6-2 x)^2} \, dx+\left (18 e^8\right ) \int e^{-\frac {1}{4} (-6-2 x)^2} \, dx\\ &=e^{-1-6 x-x^2} x+9 e^8 \sqrt {\pi } \text {erf}(3+x)+e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )-\left (18 e^8\right ) \int e^{-\frac {1}{4} (-6-2 x)^2} \, dx\\ &=e^{-1-6 x-x^2} x+e^{-1-6 x-x^2} \log \left (\frac {x}{\log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 0.96 \begin {gather*} e^{-1-6 x-x^2} \left (x+\log \left (\frac {x}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 33, normalized size = 1.43 \begin {gather*} x e^{\left (-x^{2} - 6 \, x - 1\right )} + e^{\left (-x^{2} - 6 \, x - 1\right )} \log \left (\frac {x}{\log \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 60, normalized size = 2.61 \begin {gather*} -{\left (x e^{\left (-x^{2} - 6 \, x\right )} \log \relax (x) - x e^{\left (-x^{2} - 6 \, x\right )} - e^{\left (-x^{2} - 6 \, x\right )} \log \relax (x) + e^{\left (-x^{2} - 6 \, x\right )} \log \left (\log \relax (x)\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 123, normalized size = 5.35
method | result | size |
risch | \(-{\mathrm e}^{-x^{2}-6 x -1} \ln \left (\ln \relax (x )\right )+\frac {\left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{3}+2 x +2 \ln \relax (x )\right ) {\mathrm e}^{-x^{2}-6 x -1}}{2}\) | \(123\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, \sqrt {\pi } \operatorname {erf}\left (x + 3\right ) e^{8} - e^{\left (-x^{2} - 6 \, x - 1\right )} \log \left (\log \relax (x)\right ) - \int \frac {{\left (2 \, x^{3} + 6 \, x^{2} + 2 \, {\left (x^{2} + 3 \, x\right )} \log \relax (x) - 1\right )} e^{\left (-x^{2} - 6 \, x - 1\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-x^2-6\,x-1}\,\left (\ln \left (\frac {x}{\ln \relax (x)}\right )\,\ln \relax (x)\,\left (2\,x^2+6\,x\right )-\ln \relax (x)\,\left (-2\,x^3-6\,x^2+x+1\right )+1\right )}{x\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.79, size = 19, normalized size = 0.83 \begin {gather*} \left (x + \log {\left (\frac {x}{\log {\relax (x )}} \right )}\right ) e^{- x^{2} - 6 x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________