Optimal. Leaf size=27 \[ \log (10) \left (-5-\frac {3}{x}+\log (x) \left (-3+\left (-1+\frac {5}{3 x}\right ) \log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 63, normalized size of antiderivative = 2.33, number of steps used = 11, number of rules used = 7, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {12, 14, 43, 2334, 2301, 2305, 2304} \begin {gather*} \frac {5 \log (10) \log ^2(x)}{3 x}+\log (10) \log ^2(x)-\frac {2}{3} \log (10) \left (\frac {5}{x}+3 \log (x)\right ) \log (x)+\frac {10 \log (10) \log (x)}{3 x}-3 \log (10) \log (x)-\frac {3 \log (10)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2301
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {(9-9 x) \log (10)+(10-6 x) \log (10) \log (x)-5 \log (10) \log ^2(x)}{x^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {9 (-1+x) \log (10)}{x^2}-\frac {2 (-5+3 x) \log (10) \log (x)}{x^2}-\frac {5 \log (10) \log ^2(x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{3} (2 \log (10)) \int \frac {(-5+3 x) \log (x)}{x^2} \, dx\right )-\frac {1}{3} (5 \log (10)) \int \frac {\log ^2(x)}{x^2} \, dx-(3 \log (10)) \int \frac {-1+x}{x^2} \, dx\\ &=\frac {5 \log (10) \log ^2(x)}{3 x}-\frac {2}{3} \log (10) \log (x) \left (\frac {5}{x}+3 \log (x)\right )+\frac {1}{3} (2 \log (10)) \int \frac {5+3 x \log (x)}{x^2} \, dx-(3 \log (10)) \int \left (-\frac {1}{x^2}+\frac {1}{x}\right ) \, dx-\frac {1}{3} (10 \log (10)) \int \frac {\log (x)}{x^2} \, dx\\ &=\frac {\log (10)}{3 x}-3 \log (10) \log (x)+\frac {10 \log (10) \log (x)}{3 x}+\frac {5 \log (10) \log ^2(x)}{3 x}-\frac {2}{3} \log (10) \log (x) \left (\frac {5}{x}+3 \log (x)\right )+\frac {1}{3} (2 \log (10)) \int \left (\frac {5}{x^2}+\frac {3 \log (x)}{x}\right ) \, dx\\ &=-\frac {3 \log (10)}{x}-3 \log (10) \log (x)+\frac {10 \log (10) \log (x)}{3 x}+\frac {5 \log (10) \log ^2(x)}{3 x}-\frac {2}{3} \log (10) \log (x) \left (\frac {5}{x}+3 \log (x)\right )+(2 \log (10)) \int \frac {\log (x)}{x} \, dx\\ &=-\frac {3 \log (10)}{x}-3 \log (10) \log (x)+\frac {10 \log (10) \log (x)}{3 x}+\log (10) \log ^2(x)+\frac {5 \log (10) \log ^2(x)}{3 x}-\frac {2}{3} \log (10) \log (x) \left (\frac {5}{x}+3 \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 35, normalized size = 1.30 \begin {gather*} -\frac {3 \log (10)}{x}-3 \log (10) \log (x)-\log (10) \log ^2(x)+\frac {5 \log (10) \log ^2(x)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 29, normalized size = 1.07 \begin {gather*} -\frac {{\left (3 \, x - 5\right )} \log \left (10\right ) \log \relax (x)^{2} + 9 \, x \log \left (10\right ) \log \relax (x) + 9 \, \log \left (10\right )}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 32, normalized size = 1.19 \begin {gather*} \frac {1}{3} \, {\left (\frac {5 \, \log \left (10\right )}{x} - 3 \, \log \left (10\right )\right )} \log \relax (x)^{2} - 3 \, \log \left (10\right ) \log \relax (x) - \frac {3 \, \log \left (10\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.26
method | result | size |
norman | \(\frac {-3 \ln \left (10\right ) x \ln \relax (x )+\frac {5 \ln \left (10\right ) \ln \relax (x )^{2}}{3}-\ln \left (10\right ) x \ln \relax (x )^{2}-3 \ln \left (10\right )}{x}\) | \(34\) |
risch | \(-\frac {\left (3 x \ln \relax (5)+3 x \ln \relax (2)-5 \ln \relax (5)-5 \ln \relax (2)\right ) \ln \relax (x )^{2}}{3 x}-\frac {3 \left (x \ln \relax (5) \ln \relax (x )+x \ln \relax (2) \ln \relax (x )+\ln \relax (5)+\ln \relax (2)\right )}{x}\) | \(52\) |
default | \(-\frac {5 \ln \left (10\right ) \left (-\frac {\ln \relax (x )^{2}}{x}-\frac {2 \ln \relax (x )}{x}-\frac {2}{x}\right )}{3}-\ln \left (10\right ) \ln \relax (x )^{2}+\frac {10 \ln \left (10\right ) \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )}{3}-3 \ln \left (10\right ) \ln \relax (x )-\frac {3 \ln \left (10\right )}{x}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 53, normalized size = 1.96 \begin {gather*} -\log \left (10\right ) \log \relax (x)^{2} - \frac {10}{3} \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} \log \left (10\right ) - 3 \, \log \left (10\right ) \log \relax (x) + \frac {5 \, {\left (\log \relax (x)^{2} + 2 \, \log \relax (x) + 2\right )} \log \left (10\right )}{3 \, x} - \frac {3 \, \log \left (10\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 31, normalized size = 1.15 \begin {gather*} \frac {\ln \left (10\right )\,\left (5\,{\ln \relax (x)}^2-9\right )}{3\,x}-\frac {\ln \left (10\right )\,\left (3\,{\ln \relax (x)}^2+9\,\ln \relax (x)\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 34, normalized size = 1.26 \begin {gather*} - 3 \log {\left (10 \right )} \log {\relax (x )} + \frac {\left (- 3 x \log {\left (10 \right )} + 5 \log {\left (10 \right )}\right ) \log {\relax (x )}^{2}}{3 x} - \frac {3 \log {\left (10 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________