Optimal. Leaf size=34 \[ \frac {1}{5} \left (2+e^2+x+\frac {1}{3} \left (4-x-e^{-x} x-\frac {x^2}{25}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 22, normalized size of antiderivative = 0.65, number of steps used = 6, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {12, 6742, 2194, 2176} \begin {gather*} -\frac {1}{375} (25-x)^2-\frac {e^{-x} x}{15} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{375} \int e^{-x} \left (-25+e^x (50-2 x)+25 x\right ) \, dx\\ &=\frac {1}{375} \int \left (-25 e^{-x}-2 (-25+x)+25 e^{-x} x\right ) \, dx\\ &=-\frac {1}{375} (25-x)^2-\frac {1}{15} \int e^{-x} \, dx+\frac {1}{15} \int e^{-x} x \, dx\\ &=\frac {e^{-x}}{15}-\frac {1}{375} (25-x)^2-\frac {e^{-x} x}{15}+\frac {1}{15} \int e^{-x} \, dx\\ &=-\frac {1}{375} (25-x)^2-\frac {e^{-x} x}{15}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.68 \begin {gather*} \frac {2 x}{15}-\frac {e^{-x} x}{15}-\frac {x^2}{375} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 20, normalized size = 0.59 \begin {gather*} -\frac {1}{375} \, {\left ({\left (x^{2} - 50 \, x\right )} e^{x} + 25 \, x\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.47 \begin {gather*} -\frac {1}{375} \, x^{2} - \frac {1}{15} \, x e^{\left (-x\right )} + \frac {2}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.50
method | result | size |
default | \(-\frac {x^{2}}{375}+\frac {2 x}{15}-\frac {x \,{\mathrm e}^{-x}}{15}\) | \(17\) |
risch | \(-\frac {x^{2}}{375}+\frac {2 x}{15}-\frac {x \,{\mathrm e}^{-x}}{15}\) | \(17\) |
norman | \(\left (-\frac {x}{15}+\frac {2 \,{\mathrm e}^{x} x}{15}-\frac {{\mathrm e}^{x} x^{2}}{375}\right ) {\mathrm e}^{-x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 24, normalized size = 0.71 \begin {gather*} -\frac {1}{375} \, x^{2} - \frac {1}{15} \, {\left (x + 1\right )} e^{\left (-x\right )} + \frac {2}{15} \, x + \frac {1}{15} \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 12, normalized size = 0.35 \begin {gather*} -\frac {x\,\left (x+25\,{\mathrm {e}}^{-x}-50\right )}{375} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.44 \begin {gather*} - \frac {x^{2}}{375} + \frac {2 x}{15} - \frac {x e^{- x}}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________