Optimal. Leaf size=16 \[ e^{\frac {e^{-x/3}}{16 x^4}} \]
________________________________________________________________________________________
Rubi [F] time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}} (-12-x)}{48 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{48} \int \frac {e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}} (-12-x)}{x^5} \, dx\\ &=\frac {1}{48} \int \left (-\frac {12 e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}}}{x^5}-\frac {e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}}}{x^4}\right ) \, dx\\ &=-\left (\frac {1}{48} \int \frac {e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}}}{x^4} \, dx\right )-\frac {1}{4} \int \frac {e^{\frac {e^{-x/3}}{16 x^4}-\frac {x}{3}}}{x^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 1.00 \begin {gather*} e^{\frac {e^{-x/3}}{16 x^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 22, normalized size = 1.38 \begin {gather*} e^{\left (\frac {1}{3} \, x - \frac {16 \, x^{5} - 3 \, e^{\left (-\frac {1}{3} \, x\right )}}{48 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 22, normalized size = 1.38 \begin {gather*} e^{\left (\frac {1}{3} \, x - \frac {16 \, x^{5} - 3 \, e^{\left (-\frac {1}{3} \, x\right )}}{48 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 11, normalized size = 0.69
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{-\frac {x}{3}}}{16 x^{4}}}\) | \(11\) |
norman | \({\mathrm e}^{\frac {{\mathrm e}^{-\frac {x}{3}}}{16 x^{4}}}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 10, normalized size = 0.62 \begin {gather*} e^{\left (\frac {e^{\left (-\frac {1}{3} \, x\right )}}{16 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 10, normalized size = 0.62 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{-\frac {x}{3}}}{16\,x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 12, normalized size = 0.75 \begin {gather*} e^{\frac {e^{- \frac {x}{3}}}{16 x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________