Optimal. Leaf size=24 \[ \frac {4 \log ^2(5)}{x^2 \left (3-e^x (4-x)+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-24-12 x) \log ^2(5)+e^x \left (32+4 x-4 x^2\right ) \log ^2(5)}{9 x^3+6 x^4+x^5+e^{2 x} \left (16 x^3-8 x^4+x^5\right )+e^x \left (-24 x^3-2 x^4+2 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-3 (2+x)-e^x \left (-8-x+x^2\right )\right ) \log ^2(5)}{x^3 \left (3+e^x (-4+x)+x\right )^2} \, dx\\ &=\left (4 \log ^2(5)\right ) \int \frac {-3 (2+x)-e^x \left (-8-x+x^2\right )}{x^3 \left (3+e^x (-4+x)+x\right )^2} \, dx\\ &=\left (4 \log ^2(5)\right ) \int \left (-\frac {-8-x+x^2}{(-4+x) x^3 \left (3-4 e^x+x+e^x x\right )}+\frac {-5-x+x^2}{(-4+x) x^2 \left (3-4 e^x+x+e^x x\right )^2}\right ) \, dx\\ &=-\left (\left (4 \log ^2(5)\right ) \int \frac {-8-x+x^2}{(-4+x) x^3 \left (3-4 e^x+x+e^x x\right )} \, dx\right )+\left (4 \log ^2(5)\right ) \int \frac {-5-x+x^2}{(-4+x) x^2 \left (3-4 e^x+x+e^x x\right )^2} \, dx\\ &=\left (4 \log ^2(5)\right ) \int \left (\frac {7}{16 (-4+x) \left (3-4 e^x+x+e^x x\right )^2}+\frac {5}{4 x^2 \left (3-4 e^x+x+e^x x\right )^2}+\frac {9}{16 x \left (3-4 e^x+x+e^x x\right )^2}\right ) \, dx-\left (4 \log ^2(5)\right ) \int \left (\frac {1}{16 (-4+x) \left (3-4 e^x+x+e^x x\right )}+\frac {2}{x^3 \left (3-4 e^x+x+e^x x\right )}+\frac {3}{4 x^2 \left (3-4 e^x+x+e^x x\right )}-\frac {1}{16 x \left (3-4 e^x+x+e^x x\right )}\right ) \, dx\\ &=-\left (\frac {1}{4} \log ^2(5) \int \frac {1}{(-4+x) \left (3-4 e^x+x+e^x x\right )} \, dx\right )+\frac {1}{4} \log ^2(5) \int \frac {1}{x \left (3-4 e^x+x+e^x x\right )} \, dx+\frac {1}{4} \left (7 \log ^2(5)\right ) \int \frac {1}{(-4+x) \left (3-4 e^x+x+e^x x\right )^2} \, dx+\frac {1}{4} \left (9 \log ^2(5)\right ) \int \frac {1}{x \left (3-4 e^x+x+e^x x\right )^2} \, dx-\left (3 \log ^2(5)\right ) \int \frac {1}{x^2 \left (3-4 e^x+x+e^x x\right )} \, dx+\left (5 \log ^2(5)\right ) \int \frac {1}{x^2 \left (3-4 e^x+x+e^x x\right )^2} \, dx-\left (8 \log ^2(5)\right ) \int \frac {1}{x^3 \left (3-4 e^x+x+e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 21, normalized size = 0.88 \begin {gather*} \frac {4 \log ^2(5)}{x^2 \left (3+e^x (-4+x)+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.21 \begin {gather*} \frac {4 \, \log \relax (5)^{2}}{x^{3} + 3 \, x^{2} + {\left (x^{3} - 4 \, x^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 30, normalized size = 1.25 \begin {gather*} \frac {4 \, \log \relax (5)^{2}}{x^{3} e^{x} + x^{3} - 4 \, x^{2} e^{x} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 23, normalized size = 0.96
method | result | size |
norman | \(\frac {4 \ln \relax (5)^{2}}{x^{2} \left ({\mathrm e}^{x} x -4 \,{\mathrm e}^{x}+x +3\right )}\) | \(23\) |
risch | \(\frac {4 \ln \relax (5)^{2}}{x^{2} \left ({\mathrm e}^{x} x -4 \,{\mathrm e}^{x}+x +3\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 29, normalized size = 1.21 \begin {gather*} \frac {4 \, \log \relax (5)^{2}}{x^{3} + 3 \, x^{2} + {\left (x^{3} - 4 \, x^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 20, normalized size = 0.83 \begin {gather*} \frac {4\,{\ln \relax (5)}^2}{x^2\,\left (x+{\mathrm {e}}^x\,\left (x-4\right )+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 1.08 \begin {gather*} \frac {4 \log {\relax (5 )}^{2}}{x^{3} + 3 x^{2} + \left (x^{3} - 4 x^{2}\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________