Optimal. Leaf size=20 \[ e^{22-2 e^{e^{-\frac {2}{3} (3+x)}}+x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {12, 6706} \begin {gather*} e^{x^2-2 e^{e^{-\frac {2}{3} (x+3)}}+22} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{22-2 e^{e^{\frac {1}{3} (-6-2 x)}}+x^2} \left (4 e^{e^{\frac {1}{3} (-6-2 x)}+\frac {1}{3} (-6-2 x)}+6 x\right ) \, dx\\ &=e^{22-2 e^{e^{-\frac {2}{3} (3+x)}}+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 20, normalized size = 1.00 \begin {gather*} e^{22-2 e^{e^{-2-\frac {2 x}{3}}}+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (x^{2} - 2 \, e^{\left (e^{\left (-\frac {2}{3} \, x - 2\right )}\right )} + 22\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.53, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (x^{2} - 2 \, e^{\left (e^{\left (-\frac {2}{3} \, x - 2\right )}\right )} + 22\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.80
method | result | size |
norman | \({\mathrm e}^{-2 \,{\mathrm e}^{{\mathrm e}^{-\frac {2 x}{3}-2}}+x^{2}+22}\) | \(16\) |
risch | \({\mathrm e}^{-2 \,{\mathrm e}^{{\mathrm e}^{-\frac {2 x}{3}-2}}+x^{2}+22}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (x^{2} - 2 \, e^{\left (e^{\left (-\frac {2}{3} \, x - 2\right )}\right )} + 22\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.60, size = 18, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{-2\,{\mathrm {e}}^{{\mathrm {e}}^{-\frac {2\,x}{3}}\,{\mathrm {e}}^{-2}}}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 19, normalized size = 0.95 \begin {gather*} e^{x^{2} - 2 e^{e^{- \frac {2 x}{3} - 2}} + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________