Optimal. Leaf size=30 \[ e^{e^{\left (1+x-\log ^2(2)\right ) \left (\frac {18}{(1-x)^2}+\log \left (\frac {x}{2}\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 180.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 8.19, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{e^{\frac {18+18 x-18 \log ^2(2)+\left (1-x-x^2+x^3+\left (-1+2 x-x^2\right ) \log ^2(2)\right ) \log \left (\frac {x}{2}\right )}{1-2 x+x^2}}+\frac {18+18 x-18 \log ^2(2)+\left (1-x-x^2+x^3+\left (-1+2 x-x^2\right ) \log ^2(2)\right ) \log \left (\frac {x}{2}\right )}{1-2 x+x^2}} \left (-1-52 x-18 x^2-2 x^3+x^4+\left (1+33 x+3 x^2-x^3\right ) \log ^2(2)+\left (-x+3 x^2-3 x^3+x^4\right ) \log \left (\frac {x}{2}\right )\right )}{-x+3 x^2-3 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 177, normalized size = 5.90 \begin {gather*} e^{\left (\frac {{\left (x^{2} - 2 \, x + 1\right )} e^{\left (-\frac {18 \, \log \relax (2)^{2} - {\left (x^{3} - {\left (x^{2} - 2 \, x + 1\right )} \log \relax (2)^{2} - x^{2} - x + 1\right )} \log \left (\frac {1}{2} \, x\right ) - 18 \, x - 18}{x^{2} - 2 \, x + 1}\right )} - 18 \, \log \relax (2)^{2} + {\left (x^{3} - {\left (x^{2} - 2 \, x + 1\right )} \log \relax (2)^{2} - x^{2} - x + 1\right )} \log \left (\frac {1}{2} \, x\right ) + 18 \, x + 18}{x^{2} - 2 \, x + 1} + \frac {18 \, \log \relax (2)^{2} - {\left (x^{3} - {\left (x^{2} - 2 \, x + 1\right )} \log \relax (2)^{2} - x^{2} - x + 1\right )} \log \left (\frac {1}{2} \, x\right ) - 18 \, x - 18}{x^{2} - 2 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 40, normalized size = 1.33
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{-\frac {\left (\ln \relax (2)^{2}-x -1\right ) \left (x^{2} \ln \left (\frac {x}{2}\right )-2 x \ln \left (\frac {x}{2}\right )+\ln \left (\frac {x}{2}\right )+18\right )}{\left (x -1\right )^{2}}}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 3.26, size = 62, normalized size = 2.07 \begin {gather*} e^{\left (\frac {1}{2} \, x e^{\left (\log \relax (2)^{3} - \log \relax (2)^{2} \log \relax (x) - x \log \relax (2) + x \log \relax (x) - \frac {18 \, \log \relax (2)^{2}}{x^{2} - 2 \, x + 1} + \frac {36}{x^{2} - 2 \, x + 1} + \frac {18}{x - 1}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.01, size = 159, normalized size = 5.30 \begin {gather*} {\mathrm {e}}^{{\left (\frac {1}{2}\right )}^{x+1}\,x^{\frac {x^2}{x-1}-\frac {x+x^2\,{\ln \relax (2)}^2-2\,x\,{\ln \relax (2)}^2+{\ln \relax (2)}^2}{x^2-2\,x+1}+\frac {1}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {18}{x^2-2\,x+1}}\,{\mathrm {e}}^{-\frac {2\,x\,{\ln \relax (2)}^3}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {18\,x}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {x^2\,{\ln \relax (2)}^3}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {{\ln \relax (2)}^3}{x^2-2\,x+1}}\,{\mathrm {e}}^{-\frac {18\,{\ln \relax (2)}^2}{x^2-2\,x+1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.70, size = 51, normalized size = 1.70 \begin {gather*} e^{e^{\frac {18 x + \left (x^{3} - x^{2} - x + \left (- x^{2} + 2 x - 1\right ) \log {\relax (2 )}^{2} + 1\right ) \log {\left (\frac {x}{2} \right )} - 18 \log {\relax (2 )}^{2} + 18}{x^{2} - 2 x + 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________