Optimal. Leaf size=13 \[ -7 x+\frac {2}{e^x+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6741, 6742, 2273} \begin {gather*} \frac {2}{x+e^x}-7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2273
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-7 e^{2 x}+e^x (-2-14 x)-7 x^2}{\left (e^x+x\right )^2} \, dx\\ &=\int \left (-7+\frac {2 (-1+x)}{\left (e^x+x\right )^2}-\frac {2}{e^x+x}\right ) \, dx\\ &=-7 x+2 \int \frac {-1+x}{\left (e^x+x\right )^2} \, dx-2 \int \frac {1}{e^x+x} \, dx\\ &=-7 x-2 \int \frac {1}{e^x+x} \, dx+2 \int \left (-\frac {1}{\left (e^x+x\right )^2}+\frac {x}{\left (e^x+x\right )^2}\right ) \, dx\\ &=-7 x-2 \int \frac {1}{\left (e^x+x\right )^2} \, dx+2 \int \frac {x}{\left (e^x+x\right )^2} \, dx-2 \int \frac {1}{e^x+x} \, dx\\ &=-7 x+\frac {2}{e^x+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 13, normalized size = 1.00 \begin {gather*} -7 x+\frac {2}{e^x+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 20, normalized size = 1.54 \begin {gather*} -\frac {7 \, x^{2} + 7 \, x e^{x} - 2}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 20, normalized size = 1.54 \begin {gather*} -\frac {7 \, x^{2} + 7 \, x e^{x} - 2}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 13, normalized size = 1.00
method | result | size |
risch | \(-7 x +\frac {2}{{\mathrm e}^{x}+x}\) | \(13\) |
norman | \(\frac {2-7 x^{2}-7 \,{\mathrm e}^{x} x}{{\mathrm e}^{x}+x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 20, normalized size = 1.54 \begin {gather*} -\frac {7 \, x^{2} + 7 \, x e^{x} - 2}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 12, normalized size = 0.92 \begin {gather*} \frac {2}{x+{\mathrm {e}}^x}-7\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 8, normalized size = 0.62 \begin {gather*} - 7 x + \frac {2}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________