Optimal. Leaf size=20 \[ 1+\frac {1}{x}+x+\frac {1}{\log \left (-x+e^{-5 x} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x-e^{5 x} x-5 x^2+\left (1-x^2+e^{5 x} \left (-1+x^2\right )\right ) \log ^2\left (e^{-5 x} \left (x-e^{5 x} x\right )\right )}{\left (-x^2+e^{5 x} x^2\right ) \log ^2\left (e^{-5 x} \left (x-e^{5 x} x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+x^2-\frac {x \left (-1+e^{5 x}+5 x\right )}{\left (-1+e^{5 x}\right ) \log ^2\left (\left (-1+e^{-5 x}\right ) x\right )}}{x^2} \, dx\\ &=\int \left (\frac {1}{\left (1-e^x\right ) \log ^2\left (-x+e^{-5 x} x\right )}+\frac {4+3 e^x+2 e^{2 x}+e^{3 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )}+\frac {-x-\log ^2\left (\left (-1+e^{-5 x}\right ) x\right )+x^2 \log ^2\left (\left (-1+e^{-5 x}\right ) x\right )}{x^2 \log ^2\left (-x+e^{-5 x} x\right )}\right ) \, dx\\ &=\int \frac {1}{\left (1-e^x\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+\int \frac {4+3 e^x+2 e^{2 x}+e^{3 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+\int \frac {-x-\log ^2\left (\left (-1+e^{-5 x}\right ) x\right )+x^2 \log ^2\left (\left (-1+e^{-5 x}\right ) x\right )}{x^2 \log ^2\left (-x+e^{-5 x} x\right )} \, dx\\ &=\int \left (\frac {4}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )}+\frac {3 e^x}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )}+\frac {2 e^{2 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )}+\frac {e^{3 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )}\right ) \, dx+\int \left (1-\frac {1}{x^2}-\frac {1}{x \log ^2\left (-x+e^{-5 x} x\right )}\right ) \, dx+\int \frac {1}{\left (1-e^x\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx\\ &=\frac {1}{x}+x+2 \int \frac {e^{2 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+3 \int \frac {e^x}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+4 \int \frac {1}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+\int \frac {1}{\left (1-e^x\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx+\int \frac {e^{3 x}}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \log ^2\left (-x+e^{-5 x} x\right )} \, dx-\int \frac {1}{x \log ^2\left (-x+e^{-5 x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 17, normalized size = 0.85 \begin {gather*} \frac {1}{x}+x+\frac {1}{\log \left (\left (-1+e^{-5 x}\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 48, normalized size = 2.40 \begin {gather*} \frac {{\left (x^{2} + 1\right )} \log \left (-{\left (x e^{\left (5 \, x\right )} - x\right )} e^{\left (-5 \, x\right )}\right ) + x}{x \log \left (-{\left (x e^{\left (5 \, x\right )} - x\right )} e^{\left (-5 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.25, size = 64, normalized size = 3.20
method | result | size |
norman | \(\frac {x +x^{2} \ln \left (\left (-x \,{\mathrm e}^{5 x}+x \right ) {\mathrm e}^{-5 x}\right )+\ln \left (\left (-x \,{\mathrm e}^{5 x}+x \right ) {\mathrm e}^{-5 x}\right )}{x \ln \left (\left (-x \,{\mathrm e}^{5 x}+x \right ) {\mathrm e}^{-5 x}\right )}\) | \(64\) |
risch | \(\frac {x^{2}+1}{x}+\frac {2 i}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5 x}-1\right ) {\mathrm e}^{-5 x}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5 x}-1\right ) {\mathrm e}^{-5 x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{5 x}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-5 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right )-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{5 x}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-5 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-5 x} \left ({\mathrm e}^{5 x}-1\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5 x}-1\right ) {\mathrm e}^{-5 x}\right )^{2}-\pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{5 x}-1\right ) {\mathrm e}^{-5 x}\right )^{3}+2 \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{5 x}-1\right ) {\mathrm e}^{-5 x}\right )^{2}-2 \pi -2 i \ln \left ({\mathrm e}^{5 x}\right )+2 i \ln \relax (x )+2 i \ln \left ({\mathrm e}^{5 x}-1\right )}\) | \(286\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 100, normalized size = 5.00 \begin {gather*} \frac {5 \, x^{3} - {\left (x^{2} + 1\right )} \log \relax (x) - {\left (x^{2} + 1\right )} \log \left (e^{\left (4 \, x\right )} + e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )} + e^{x} + 1\right ) - {\left (x^{2} + 1\right )} \log \left (-e^{x} + 1\right ) + 4 \, x}{5 \, x^{2} - x \log \relax (x) - x \log \left (e^{\left (4 \, x\right )} + e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )} + e^{x} + 1\right ) - x \log \left (-e^{x} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 18, normalized size = 0.90 \begin {gather*} x+\frac {1}{\ln \left (x\,{\mathrm {e}}^{-5\,x}-x\right )}+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 1.00 \begin {gather*} x + \frac {1}{\log {\left (\left (- x e^{5 x} + x\right ) e^{- 5 x} \right )}} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________