Optimal. Leaf size=26 \[ \frac {4 e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (e^4 (-5-5 x)-5 x^3\right )+e^{2 x} \left (-x^2+e^4 (1+x)\right )}{e^{x+\frac {e^4-x \log (4)}{x}} \left (-10 x^2-20 x^3-10 x^4\right )+e^{2 x+\frac {e^4-x \log (4)}{x}} \left (x^2+2 x^3+x^4\right )+e^{\frac {e^4-x \log (4)}{x}} \left (25 x^2+50 x^3+25 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{-\frac {e^4}{x}+x} \left (-e^x x^2-5 x^3-5 e^4 (1+x)+e^{4+x} (1+x)\right )}{\left (5-e^x\right )^2 x^2 (1+x)^2} \, dx\\ &=4 \int \frac {e^{-\frac {e^4}{x}+x} \left (-e^x x^2-5 x^3-5 e^4 (1+x)+e^{4+x} (1+x)\right )}{\left (5-e^x\right )^2 x^2 (1+x)^2} \, dx\\ &=4 \int \left (-\frac {5 e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right )^2 (1+x)}-\frac {e^{-\frac {e^4}{x}+x} \left (-e^4-e^4 x+x^2\right )}{\left (-5+e^x\right ) x^2 (1+x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{-\frac {e^4}{x}+x} \left (-e^4-e^4 x+x^2\right )}{\left (-5+e^x\right ) x^2 (1+x)^2} \, dx\right )-20 \int \frac {e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right )^2 (1+x)} \, dx\\ &=-\left (4 \int \left (-\frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) x^2}+\frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) x}+\frac {e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)^2}-\frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)}\right ) \, dx\right )-20 \int \frac {e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right )^2 (1+x)} \, dx\\ &=4 \int \frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) x^2} \, dx-4 \int \frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) x} \, dx-4 \int \frac {e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)^2} \, dx+4 \int \frac {e^{4-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)} \, dx-20 \int \frac {e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right )^2 (1+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 e^{-\frac {e^4}{x}+x}}{\left (-5+e^x\right ) (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 55, normalized size = 2.12 \begin {gather*} \frac {e^{\left (3 \, x\right )}}{{\left (x + 1\right )} e^{\left (x + \frac {2 \, x^{2} - 2 \, x \log \relax (2) + e^{4}}{x}\right )} - 5 \, {\left (x + 1\right )} e^{\left (\frac {2 \, x^{2} - 2 \, x \log \relax (2) + e^{4}}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 100, normalized size = 3.85 \begin {gather*} \frac {4 \, e^{\left (\frac {2 \, {\left (2 \, x^{2} + e^{4}\right )}}{x}\right )}}{x e^{\left (\frac {2 \, x^{2} + e^{4}}{x} + \frac {2 \, {\left (x^{2} + e^{4}\right )}}{x}\right )} - 5 \, x e^{\left (\frac {3 \, {\left (x^{2} + e^{4}\right )}}{x}\right )} + e^{\left (\frac {2 \, x^{2} + e^{4}}{x} + \frac {2 \, {\left (x^{2} + e^{4}\right )}}{x}\right )} - 5 \, e^{\left (\frac {3 \, {\left (x^{2} + e^{4}\right )}}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 28, normalized size = 1.08
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-\frac {{\mathrm e}^{4}-x^{2}}{x}}}{\left (x +1\right ) \left ({\mathrm e}^{x}-5\right )}\) | \(28\) |
norman | \(\frac {{\mathrm e}^{x} {\mathrm e}^{-\frac {-2 x \ln \relax (2)+{\mathrm e}^{4}}{x}}}{\left ({\mathrm e}^{x}-5\right ) \left (x +1\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 25, normalized size = 0.96 \begin {gather*} \frac {4 \, e^{\left (x - \frac {e^{4}}{x}\right )}}{{\left (x + 1\right )} e^{x} - 5 \, x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^4}{x}}\,{\mathrm {e}}^x}{5\,x-{\mathrm {e}}^x-x\,{\mathrm {e}}^x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 29, normalized size = 1.12 \begin {gather*} \frac {e^{x} e^{- \frac {- 2 x \log {\relax (2 )} + e^{4}}{x}}}{x e^{x} - 5 x + e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________