Optimal. Leaf size=30 \[ x \left (1+x-\left (-e^4-x+4 \log \left (\frac {2}{x}\right )-\log (x)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 134, normalized size of antiderivative = 4.47, number of steps used = 16, number of rules used = 9, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2313, 9, 2296, 2295, 6741, 12, 6742, 2304, 2361} \begin {gather*} -x^3-3 x^2-2 x^2 \log (x)+8 \left (x^2+\left (5+e^4\right ) x\right ) \log \left (\frac {2}{x}\right )+\left (1-e^8\right ) x+2 \left (5+e^4\right ) x-50 x+4 \left (x+e^4+5\right )^2-\frac {1}{2} e^4 (2 x+5)^2-16 x \log ^2\left (\frac {2}{x}\right )-x \log ^2(x)-40 x \log \left (\frac {2}{x}\right )+8 x \log \left (\frac {2}{x}\right ) \log (x)-2 \left (5+e^4\right ) x \log (x)+10 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rule 12
Rule 2295
Rule 2296
Rule 2304
Rule 2313
Rule 2361
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (1-e^8\right ) x-4 x^2-x^3-\frac {1}{2} e^4 (5+2 x)^2-16 \int \log ^2\left (\frac {2}{x}\right ) \, dx+\int \left (40+8 e^4+16 x\right ) \log \left (\frac {2}{x}\right ) \, dx+\int \left (-10-2 e^4-4 x+8 \log \left (\frac {2}{x}\right )\right ) \log (x) \, dx-\int \log ^2(x) \, dx\\ &=\left (1-e^8\right ) x-4 x^2-x^3-\frac {1}{2} e^4 (5+2 x)^2+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )-x \log ^2(x)+2 \int \log (x) \, dx-32 \int \log \left (\frac {2}{x}\right ) \, dx+\int 8 \left (5+e^4+x\right ) \, dx+\int 2 \left (-5 \left (1+\frac {e^4}{5}\right )-2 x+4 \log \left (\frac {2}{x}\right )\right ) \log (x) \, dx\\ &=-34 x+\left (1-e^8\right ) x-4 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-32 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+2 x \log (x)-x \log ^2(x)+2 \int \left (-5 \left (1+\frac {e^4}{5}\right )-2 x+4 \log \left (\frac {2}{x}\right )\right ) \log (x) \, dx\\ &=-34 x+\left (1-e^8\right ) x-4 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-32 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+2 x \log (x)-x \log ^2(x)+2 \int \left (-\left (\left (5+e^4\right ) \log (x)\right )-2 x \log (x)+4 \log \left (\frac {2}{x}\right ) \log (x)\right ) \, dx\\ &=-34 x+\left (1-e^8\right ) x-4 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-32 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+2 x \log (x)-x \log ^2(x)-4 \int x \log (x) \, dx+8 \int \log \left (\frac {2}{x}\right ) \log (x) \, dx-\left (2 \left (5+e^4\right )\right ) \int \log (x) \, dx\\ &=-34 x+2 \left (5+e^4\right ) x+\left (1-e^8\right ) x-3 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-32 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+10 x \log (x)-2 \left (5+e^4\right ) x \log (x)-2 x^2 \log (x)+8 x \log \left (\frac {2}{x}\right ) \log (x)-x \log ^2(x)-8 \int \left (1+\log \left (\frac {2}{x}\right )\right ) \, dx\\ &=-42 x+2 \left (5+e^4\right ) x+\left (1-e^8\right ) x-3 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-32 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+10 x \log (x)-2 \left (5+e^4\right ) x \log (x)-2 x^2 \log (x)+8 x \log \left (\frac {2}{x}\right ) \log (x)-x \log ^2(x)-8 \int \log \left (\frac {2}{x}\right ) \, dx\\ &=-50 x+2 \left (5+e^4\right ) x+\left (1-e^8\right ) x-3 x^2-x^3+4 \left (5+e^4+x\right )^2-\frac {1}{2} e^4 (5+2 x)^2-40 x \log \left (\frac {2}{x}\right )+8 \left (\left (5+e^4\right ) x+x^2\right ) \log \left (\frac {2}{x}\right )-16 x \log ^2\left (\frac {2}{x}\right )+10 x \log (x)-2 \left (5+e^4\right ) x \log (x)-2 x^2 \log (x)+8 x \log \left (\frac {2}{x}\right ) \log (x)-x \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 58, normalized size = 1.93 \begin {gather*} -x \left (-1+e^8-x+2 e^4 x+x^2+16 \log ^2\left (\frac {2}{x}\right )+2 \left (e^4+x\right ) \log (x)+\log ^2(x)-8 \log \left (\frac {2}{x}\right ) \left (e^4+x+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 72, normalized size = 2.40 \begin {gather*} -x^{3} - 2 \, x^{2} e^{4} - x \log \relax (2)^{2} - 25 \, x \log \left (\frac {2}{x}\right )^{2} + x^{2} - x e^{8} - 2 \, {\left (x^{2} + x e^{4}\right )} \log \relax (2) + 10 \, {\left (x^{2} + x e^{4} + x \log \relax (2)\right )} \log \left (\frac {2}{x}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 131, normalized size = 4.37 \begin {gather*} -x^{3} + 4 \, x^{2} {\left (\frac {2 \, e^{4}}{x} + \frac {10}{x} + 1\right )} - 2 \, x^{2} \log \relax (x) - 2 \, x e^{4} \log \relax (x) + 8 \, x \log \relax (2) \log \relax (x) - 9 \, x \log \relax (x)^{2} - 16 \, x \log \left (\frac {2}{x}\right )^{2} - 3 \, x^{2} - x e^{8} - 2 \, {\left (x^{2} + 5 \, x\right )} e^{4} + 2 \, x e^{4} - 8 \, x \log \relax (2) + 8 \, x \log \relax (x) + 8 \, {\left (x^{2} + x e^{4} + 5 \, x\right )} \log \left (\frac {2}{x}\right ) - 32 \, x \log \left (\frac {2}{x}\right ) - 39 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 103, normalized size = 3.43
method | result | size |
risch | \(-9 x \ln \relax (x )^{2}+2 x \ln \relax (x )+\left (-2 x \,{\mathrm e}^{4}+8 x \ln \relax (2)-2 x^{2}+6 x \right ) \ln \relax (x )-8 x \ln \relax (2)+x^{2}-16 x \ln \left (\frac {2}{x}\right )^{2}-32 x \ln \left (\frac {2}{x}\right )+\left (8 x \,{\mathrm e}^{4}+8 x^{2}+40 x \right ) \ln \left (\frac {2}{x}\right )-x \,{\mathrm e}^{8}-2 x^{2} {\mathrm e}^{4}-x^{3}+x\) | \(103\) |
default | \(x +{\mathrm e}^{4} \left (-2 x^{2}-10 x \right )+8 \,{\mathrm e}^{4} x \ln \left (\frac {2}{x}\right )+10 x \,{\mathrm e}^{4}+8 x \ln \left (\frac {2}{x}\right )+8 x^{2} \ln \left (\frac {2}{x}\right )+x^{2}-2 x^{2} \ln \relax (x )+8 x \ln \relax (2) \ln \relax (x )-8 x \ln \relax (2)-2 x \,{\mathrm e}^{4} \ln \relax (x )-8 x \ln \left (\frac {1}{x}\right )+8 \ln \relax (x ) \ln \left (\frac {1}{x}\right ) x -x^{3}-x \,{\mathrm e}^{8}-x \ln \relax (x )^{2}-16 x \ln \left (\frac {2}{x}\right )^{2}\) | \(126\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 125, normalized size = 4.17 \begin {gather*} -x^{3} - 16 \, x \log \left (\frac {2}{x}\right )^{2} - {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + x^{2} + 2 \, x {\left (e^{4} - 4 \, \log \relax (2) - 3\right )} + 8 \, x {\left (e^{4} + 5\right )} - x e^{8} - 2 \, {\left (x^{2} + 5 \, x\right )} e^{4} - 2 \, {\left (x^{2} + x e^{4} - 4 \, x \log \left (\frac {2}{x}\right ) + x\right )} \log \relax (x) + 8 \, x \log \relax (x) + 8 \, {\left (x^{2} + x e^{4} + 5 \, x\right )} \log \left (\frac {2}{x}\right ) - 32 \, x \log \left (\frac {2}{x}\right ) - 31 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 72, normalized size = 2.40 \begin {gather*} -x\,\left ({\mathrm {e}}^8-x+16\,{\ln \left (\frac {2}{x}\right )}^2+2\,x\,{\mathrm {e}}^4+{\ln \relax (x)}^2-8\,{\mathrm {e}}^4\,\ln \left (\frac {2}{x}\right )-8\,x\,\ln \left (\frac {2}{x}\right )+2\,{\mathrm {e}}^4\,\ln \relax (x)+2\,x\,\ln \relax (x)+x^2-8\,\ln \left (\frac {2}{x}\right )\,\ln \relax (x)-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 70, normalized size = 2.33 \begin {gather*} - x^{3} + x^{2} \left (- 2 e^{4} + 1 + 8 \log {\relax (2 )}\right ) - 25 x \log {\relax (x )}^{2} + x \left (- e^{8} - 16 \log {\relax (2 )}^{2} + 1 + 8 e^{4} \log {\relax (2 )}\right ) + \left (- 10 x^{2} - 10 x e^{4} + 40 x \log {\relax (2 )}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________