Optimal. Leaf size=24 \[ \log (4+x)+\log \left (\log \left (\log \left (25-2 \left (-5+\frac {2 e^3 x}{\log (3)}\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 3, number of rules used = 2, integrand size = 121, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6688, 6684} \begin {gather*} \log (x+4)+\log \left (\log \left (\log \left (35-\frac {4 e^3 x}{\log (3)}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{4+x}+\frac {4 e^3}{\left (4 e^3 x-35 \log (3)\right ) \log \left (35-\frac {4 e^3 x}{\log (3)}\right ) \log \left (\log \left (35-\frac {4 e^3 x}{\log (3)}\right )\right )}\right ) \, dx\\ &=\log (4+x)+\left (4 e^3\right ) \int \frac {1}{\left (4 e^3 x-35 \log (3)\right ) \log \left (35-\frac {4 e^3 x}{\log (3)}\right ) \log \left (\log \left (35-\frac {4 e^3 x}{\log (3)}\right )\right )} \, dx\\ &=\log (4+x)+\log \left (\log \left (\log \left (35-\frac {4 e^3 x}{\log (3)}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 20, normalized size = 0.83 \begin {gather*} \log (4+x)+\log \left (\log \left (\log \left (35-\frac {4 e^3 x}{\log (3)}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 24, normalized size = 1.00 \begin {gather*} \log \left (x + 4\right ) + \log \left (\log \left (\log \left (-\frac {4 \, x e^{3} - 35 \, \log \relax (3)}{\log \relax (3)}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.66, size = 105, normalized size = 4.38 \begin {gather*} \frac {35 \, \log \relax (3) \log \left (4 \, x e^{3} - 35 \, \log \relax (3)\right ) - 35 \, \log \relax (3) \log \left (-4 \, x e^{3} + 35 \, \log \relax (3)\right ) + 16 \, e^{3} \log \left (x + 4\right ) + 35 \, \log \relax (3) \log \left (x + 4\right ) + 16 \, e^{3} \log \left (\log \left (\log \left (-4 \, x e^{3} + 35 \, \log \relax (3)\right ) - \log \left (\log \relax (3)\right )\right )\right ) + 35 \, \log \relax (3) \log \left (\log \left (\log \left (-4 \, x e^{3} + 35 \, \log \relax (3)\right ) - \log \left (\log \relax (3)\right )\right )\right )}{16 \, e^{3} + 35 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 24, normalized size = 1.00
method | result | size |
norman | \(\ln \left (\ln \left (\ln \left (\frac {35 \ln \relax (3)-4 x \,{\mathrm e}^{3}}{\ln \relax (3)}\right )\right )\right )+\ln \left (4+x \right )\) | \(24\) |
risch | \(\ln \left (\ln \left (\ln \left (\frac {35 \ln \relax (3)-4 x \,{\mathrm e}^{3}}{\ln \relax (3)}\right )\right )\right )+\ln \left (4+x \right )\) | \(24\) |
default | \(\ln \left (4+x \right )+\ln \left (\ln \left (-\ln \left (\ln \relax (3)\right )+\ln \left (35 \ln \relax (3)-4 x \,{\mathrm e}^{3}\right )\right )\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.87, size = 24, normalized size = 1.00 \begin {gather*} \log \left (x + 4\right ) + \log \left (\log \left (\log \left (-4 \, x e^{3} + 35 \, \log \relax (3)\right ) - \log \left (\log \relax (3)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 24, normalized size = 1.00 \begin {gather*} \ln \left (x+4\right )+\ln \left (\ln \left (\ln \left (35\,\ln \relax (3)-4\,x\,{\mathrm {e}}^3\right )-\ln \left (\ln \relax (3)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 24, normalized size = 1.00 \begin {gather*} \log {\left (x + 4 \right )} + \log {\left (\log {\left (\log {\left (\frac {- 4 x e^{3} + 35 \log {\relax (3 )}}{\log {\relax (3 )}} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________