Optimal. Leaf size=30 \[ \log \left (4-e^{2 \left (1-e^3\right ) \left (e^{2 x}+x\right )}+5 (1-x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 34, normalized size of antiderivative = 1.13, number of steps used = 1, number of rules used = 1, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6684} \begin {gather*} \log \left (-5 x-e^{-2 e^3 x+2 x+2 \left (1-e^3\right ) e^{2 x}}+9\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (9-e^{2 e^{2 x} \left (1-e^3\right )+2 x-2 e^3 x}-5 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 22, normalized size = 0.73 \begin {gather*} \log \left (-9+e^{-2 \left (-1+e^3\right ) \left (e^{2 x}+x\right )}+5 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 26, normalized size = 0.87 \begin {gather*} \log \left (5 \, x + e^{\left (-2 \, x e^{3} - 2 \, {\left (e^{3} - 1\right )} e^{\left (2 \, x\right )} + 2 \, x\right )} - 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 30, normalized size = 1.00 \begin {gather*} \log \left (5 \, x + e^{\left (-2 \, x e^{3} + 2 \, x + 2 \, e^{\left (2 \, x\right )} - 2 \, e^{\left (2 \, x + 3\right )}\right )} - 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.67
method | result | size |
risch | \(\ln \left ({\mathrm e}^{-2 \left ({\mathrm e}^{2 x}+x \right ) \left ({\mathrm e}^{3}-1\right )}+5 x -9\right )\) | \(20\) |
norman | \(\ln \left ({\mathrm e}^{2 \left (-{\mathrm e}^{3}+1\right ) {\mathrm e}^{2 x}-2 x \,{\mathrm e}^{3}+2 x}+5 x -9\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.94, size = 63, normalized size = 2.10 \begin {gather*} -2 \, e^{\left (2 \, x + 3\right )} + \log \left (5 \, x - 9\right ) + \log \left (\frac {{\left ({\left (5 \, x - 9\right )} e^{\left (2 \, x e^{3} + 2 \, e^{\left (2 \, x + 3\right )}\right )} + e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x e^{3}\right )}}{5 \, x - 9}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 33, normalized size = 1.10 \begin {gather*} \ln \left (5\,x+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^3}-9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 29, normalized size = 0.97 \begin {gather*} \log {\left (5 x + e^{- 2 x e^{3} + 2 x + 2 \left (1 - e^{3}\right ) e^{2 x}} - 9 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________