Optimal. Leaf size=26 \[ \left (x-x \left (e^2+x+\frac {x}{-6+x+e^{3 x} x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 6.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-432 x+1296 x^2-1224 x^3+456 x^4-72 x^5+4 x^6+e^4 \left (-432 x+216 x^2-36 x^3+2 x^4\right )+e^2 \left (864 x-1512 x^2+660 x^3-108 x^4+6 x^5\right )+e^{9 x} \left (2 x^4+2 e^4 x^4-6 x^5+4 x^6+e^2 \left (-4 x^4+6 x^5\right )\right )+e^{3 x} \left (216 x^2-660 x^3+528 x^4-114 x^5+6 x^6+e^4 \left (216 x^2-72 x^3+6 x^4\right )+e^2 \left (-432 x^2+732 x^3-184 x^4+12 x^5\right )\right )+e^{6 x} \left (-36 x^3+110 x^4-78 x^5+6 x^6+e^4 \left (-36 x^3+6 x^4\right )+e^2 \left (72 x^3-116 x^4+12 x^5\right )\right )}{-216+108 x-18 x^2+x^3+e^{9 x} x^3+e^{3 x} \left (108 x-36 x^2+3 x^3\right )+e^{6 x} \left (-18 x^2+3 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {432 x-1296 x^2+1224 x^3-456 x^4+72 x^5-4 x^6-e^4 \left (-432 x+216 x^2-36 x^3+2 x^4\right )-e^2 \left (864 x-1512 x^2+660 x^3-108 x^4+6 x^5\right )-e^{9 x} \left (2 x^4+2 e^4 x^4-6 x^5+4 x^6+e^2 \left (-4 x^4+6 x^5\right )\right )-e^{3 x} \left (216 x^2-660 x^3+528 x^4-114 x^5+6 x^6+e^4 \left (216 x^2-72 x^3+6 x^4\right )+e^2 \left (-432 x^2+732 x^3-184 x^4+12 x^5\right )\right )-e^{6 x} \left (-36 x^3+110 x^4-78 x^5+6 x^6+e^4 \left (-36 x^3+6 x^4\right )+e^2 \left (72 x^3-116 x^4+12 x^5\right )\right )}{\left (6-x-e^{3 x} x\right )^3} \, dx\\ &=\int \left (\frac {6 x^3 \left (-2-6 x+x^2\right )}{\left (-6+x+e^{3 x} x\right )^3}+2 x \left (\left (-1+e^2\right )^2-3 \left (1-e^2\right ) x+2 x^2\right )+\frac {2 x^2 \left (2 \left (1-e^2\right )-3 \left (2-e^2\right ) x+3 x^2\right )}{6-x-e^{3 x} x}+\frac {2 x^2 \left (6 \left (1-e^2\right )+\left (13-18 e^2\right ) x-3 \left (8-e^2\right ) x^2+3 x^3\right )}{\left (6-x-e^{3 x} x\right )^2}\right ) \, dx\\ &=2 \int x \left (\left (-1+e^2\right )^2-3 \left (1-e^2\right ) x+2 x^2\right ) \, dx+2 \int \frac {x^2 \left (2 \left (1-e^2\right )-3 \left (2-e^2\right ) x+3 x^2\right )}{6-x-e^{3 x} x} \, dx+2 \int \frac {x^2 \left (6 \left (1-e^2\right )+\left (13-18 e^2\right ) x-3 \left (8-e^2\right ) x^2+3 x^3\right )}{\left (6-x-e^{3 x} x\right )^2} \, dx+6 \int \frac {x^3 \left (-2-6 x+x^2\right )}{\left (-6+x+e^{3 x} x\right )^3} \, dx\\ &=2 \int \left (\left (-1+e^2\right )^2 x+3 (-1+e) (1+e) x^2+2 x^3\right ) \, dx+2 \int \left (-\frac {6 (-1+e) (1+e) x^2}{\left (-6+x+e^{3 x} x\right )^2}-\frac {\left (-13+18 e^2\right ) x^3}{\left (-6+x+e^{3 x} x\right )^2}+\frac {3 \left (-8+e^2\right ) x^4}{\left (-6+x+e^{3 x} x\right )^2}+\frac {3 x^5}{\left (-6+x+e^{3 x} x\right )^2}\right ) \, dx+2 \int \left (\frac {2 (-1+e) (1+e) x^2}{-6+x+e^{3 x} x}-\frac {3 \left (-2+e^2\right ) x^3}{-6+x+e^{3 x} x}-\frac {3 x^4}{-6+x+e^{3 x} x}\right ) \, dx+6 \int \left (-\frac {2 x^3}{\left (-6+x+e^{3 x} x\right )^3}-\frac {6 x^4}{\left (-6+x+e^{3 x} x\right )^3}+\frac {x^5}{\left (-6+x+e^{3 x} x\right )^3}\right ) \, dx\\ &=\left (1-e^2\right )^2 x^2-2 (1-e) (1+e) x^3+x^4+6 \int \frac {x^5}{\left (-6+x+e^{3 x} x\right )^3} \, dx+6 \int \frac {x^5}{\left (-6+x+e^{3 x} x\right )^2} \, dx-6 \int \frac {x^4}{-6+x+e^{3 x} x} \, dx-12 \int \frac {x^3}{\left (-6+x+e^{3 x} x\right )^3} \, dx-36 \int \frac {x^4}{\left (-6+x+e^{3 x} x\right )^3} \, dx+(12 (1-e) (1+e)) \int \frac {x^2}{\left (-6+x+e^{3 x} x\right )^2} \, dx+(4 (-1+e) (1+e)) \int \frac {x^2}{-6+x+e^{3 x} x} \, dx+\left (2 \left (13-18 e^2\right )\right ) \int \frac {x^3}{\left (-6+x+e^{3 x} x\right )^2} \, dx+\left (6 \left (2-e^2\right )\right ) \int \frac {x^3}{-6+x+e^{3 x} x} \, dx-\left (6 \left (8-e^2\right )\right ) \int \frac {x^4}{\left (-6+x+e^{3 x} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 60, normalized size = 2.31 \begin {gather*} x^2 \left (\left (-1+e^2\right )^2+2 \left (-1+e^2\right ) x+x^2+\frac {x^2}{\left (-6+x+e^{3 x} x\right )^2}+\frac {2 x \left (-1+e^2+x\right )}{-6+x+e^{3 x} x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 188, normalized size = 7.23 \begin {gather*} \frac {x^{6} - 12 \, x^{5} + 48 \, x^{4} - 72 \, x^{3} + 36 \, x^{2} + {\left (x^{4} - 12 \, x^{3} + 36 \, x^{2}\right )} e^{4} + 2 \, {\left (x^{5} - 12 \, x^{4} + 42 \, x^{3} - 36 \, x^{2}\right )} e^{2} + {\left (x^{6} - 2 \, x^{5} + x^{4} e^{4} + x^{4} + 2 \, {\left (x^{5} - x^{4}\right )} e^{2}\right )} e^{\left (6 \, x\right )} + 2 \, {\left (x^{6} - 7 \, x^{5} + 12 \, x^{4} - 6 \, x^{3} + {\left (x^{4} - 6 \, x^{3}\right )} e^{4} + {\left (2 \, x^{5} - 13 \, x^{4} + 12 \, x^{3}\right )} e^{2}\right )} e^{\left (3 \, x\right )}}{x^{2} e^{\left (6 \, x\right )} + x^{2} + 2 \, {\left (x^{2} - 6 \, x\right )} e^{\left (3 \, x\right )} - 12 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.83, size = 255, normalized size = 9.81 \begin {gather*} \frac {x^{6} e^{\left (6 \, x\right )} + 2 \, x^{6} e^{\left (3 \, x\right )} + x^{6} + 2 \, x^{5} e^{2} - 2 \, x^{5} e^{\left (6 \, x\right )} - 14 \, x^{5} e^{\left (3 \, x\right )} + 2 \, x^{5} e^{\left (6 \, x + 2\right )} + 4 \, x^{5} e^{\left (3 \, x + 2\right )} - 12 \, x^{5} + x^{4} e^{4} - 24 \, x^{4} e^{2} + x^{4} e^{\left (6 \, x\right )} + 24 \, x^{4} e^{\left (3 \, x\right )} + x^{4} e^{\left (6 \, x + 4\right )} - 2 \, x^{4} e^{\left (6 \, x + 2\right )} + 2 \, x^{4} e^{\left (3 \, x + 4\right )} - 26 \, x^{4} e^{\left (3 \, x + 2\right )} + 48 \, x^{4} - 12 \, x^{3} e^{4} + 84 \, x^{3} e^{2} - 12 \, x^{3} e^{\left (3 \, x\right )} - 12 \, x^{3} e^{\left (3 \, x + 4\right )} + 24 \, x^{3} e^{\left (3 \, x + 2\right )} - 72 \, x^{3} + 36 \, x^{2} e^{4} - 72 \, x^{2} e^{2} + 36 \, x^{2}}{x^{2} e^{\left (6 \, x\right )} + 2 \, x^{2} e^{\left (3 \, x\right )} + x^{2} - 12 \, x e^{\left (3 \, x\right )} - 12 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.36, size = 92, normalized size = 3.54
method | result | size |
risch | \(x^{4}+2 x^{3} {\mathrm e}^{2}-2 x^{3}-2 x^{2} {\mathrm e}^{2}+x^{2} {\mathrm e}^{4}+x^{2}+\frac {\left (2 x \,{\mathrm e}^{3 x +2}+2 x^{2} {\mathrm e}^{3 x}+2 \,{\mathrm e}^{2} x +2 x^{2}-2 x \,{\mathrm e}^{3 x}-12 \,{\mathrm e}^{2}-13 x +12\right ) x^{3}}{\left (x +x \,{\mathrm e}^{3 x}-6\right )^{2}}\) | \(92\) |
norman | \(\frac {x^{6}+\left (-12+2 \,{\mathrm e}^{2}\right ) x^{5}+\left (-72+84 \,{\mathrm e}^{2}-12 \,{\mathrm e}^{4}\right ) x^{3}+\left (48-24 \,{\mathrm e}^{2}+{\mathrm e}^{4}\right ) x^{4}+\left (36-72 \,{\mathrm e}^{2}+36 \,{\mathrm e}^{4}\right ) x^{2}+{\mathrm e}^{6 x} x^{6}+\left (2 \,{\mathrm e}^{2}-2\right ) x^{5} {\mathrm e}^{6 x}+\left (4 \,{\mathrm e}^{2}-14\right ) x^{5} {\mathrm e}^{3 x}+\left (-12+24 \,{\mathrm e}^{2}-12 \,{\mathrm e}^{4}\right ) x^{3} {\mathrm e}^{3 x}+\left (24+2 \,{\mathrm e}^{4}-26 \,{\mathrm e}^{2}\right ) x^{4} {\mathrm e}^{3 x}+\left ({\mathrm e}^{4}-2 \,{\mathrm e}^{2}+1\right ) x^{4} {\mathrm e}^{6 x}+2 \,{\mathrm e}^{3 x} x^{6}}{\left (x +x \,{\mathrm e}^{3 x}-6\right )^{2}}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 158, normalized size = 6.08 \begin {gather*} \frac {x^{6} + 2 \, x^{5} {\left (e^{2} - 6\right )} + x^{4} {\left (e^{4} - 24 \, e^{2} + 48\right )} - 12 \, x^{3} {\left (e^{4} - 7 \, e^{2} + 6\right )} + 36 \, x^{2} {\left (e^{4} - 2 \, e^{2} + 1\right )} + {\left (x^{6} + 2 \, x^{5} {\left (e^{2} - 1\right )} + x^{4} {\left (e^{4} - 2 \, e^{2} + 1\right )}\right )} e^{\left (6 \, x\right )} + 2 \, {\left (x^{6} + x^{5} {\left (2 \, e^{2} - 7\right )} + x^{4} {\left (e^{4} - 13 \, e^{2} + 12\right )} - 6 \, x^{3} {\left (e^{4} - 2 \, e^{2} + 1\right )}\right )} e^{\left (3 \, x\right )}}{x^{2} e^{\left (6 \, x\right )} + x^{2} + 2 \, {\left (x^{2} - 6 \, x\right )} e^{\left (3 \, x\right )} - 12 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.50, size = 146, normalized size = 5.62 \begin {gather*} x^3\,\left (2\,{\mathrm {e}}^2-2\right )+x^2\,{\left ({\mathrm {e}}^2-1\right )}^2+x^4-\frac {2\,\left (x^5\,{\mathrm {e}}^2-6\,x^4\,{\mathrm {e}}^2-2\,x^3\,{\mathrm {e}}^2+2\,x^3+4\,x^4-7\,x^5+x^6\right )}{\left (-x^2+6\,x+2\right )\,\left (x+x\,{\mathrm {e}}^{3\,x}-6\right )}+\frac {-x^7+6\,x^6+2\,x^5}{x\,\left (-x^2+6\,x+2\right )\,\left ({\left (x-6\right )}^2+x^2\,{\mathrm {e}}^{6\,x}+2\,x\,{\mathrm {e}}^{3\,x}\,\left (x-6\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.38, size = 112, normalized size = 4.31 \begin {gather*} x^{4} + x^{3} \left (-2 + 2 e^{2}\right ) + x^{2} \left (- 2 e^{2} + 1 + e^{4}\right ) + \frac {2 x^{5} - 13 x^{4} + 2 x^{4} e^{2} - 12 x^{3} e^{2} + 12 x^{3} + \left (2 x^{5} - 2 x^{4} + 2 x^{4} e^{2}\right ) e^{3 x}}{x^{2} e^{6 x} + x^{2} - 12 x + \left (2 x^{2} - 12 x\right ) e^{3 x} + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________