Optimal. Leaf size=21 \[ -4+x+x^{4 x \left (x+\frac {e^8 \log (3 x)}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+e^{4 x^2 \log (x)+4 e^8 \log (x) \log (3 x)} \left (4 x^2+\left (4 e^8+8 x^2\right ) \log (x)+4 e^8 \log (3 x)\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+4 x^{-1+4 x^2+4 e^8 \log (3 x)} \left (x^2+e^8 \log (3)+2 e^8 \log (x)+2 x^2 \log (x)\right )\right ) \, dx\\ &=x+4 \int x^{-1+4 x^2+4 e^8 \log (3 x)} \left (x^2+e^8 \log (3)+2 e^8 \log (x)+2 x^2 \log (x)\right ) \, dx\\ &=x+4 \int \left (x^{1+4 x^2+4 e^8 \log (3 x)}+e^8 x^{-1+4 x^2+4 e^8 \log (3 x)} \log (3)+2 e^8 x^{-1+4 x^2+4 e^8 \log (3 x)} \log (x)+2 x^{1+4 x^2+4 e^8 \log (3 x)} \log (x)\right ) \, dx\\ &=x+4 \int x^{1+4 x^2+4 e^8 \log (3 x)} \, dx+8 \int x^{1+4 x^2+4 e^8 \log (3 x)} \log (x) \, dx+\left (8 e^8\right ) \int x^{-1+4 x^2+4 e^8 \log (3 x)} \log (x) \, dx+\left (4 e^8 \log (3)\right ) \int x^{-1+4 x^2+4 e^8 \log (3 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 18, normalized size = 0.86 \begin {gather*} x+x^{4 \left (x^2+e^8 \log (3 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 25, normalized size = 1.19 \begin {gather*} x + e^{\left (4 \, e^{8} \log \relax (x)^{2} + 4 \, {\left (x^{2} + e^{8} \log \relax (3)\right )} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.60, size = 21, normalized size = 1.00 \begin {gather*} x + e^{\left (4 \, x^{2} \log \relax (x) + 4 \, e^{8} \log \left (3 \, x\right ) \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 22, normalized size = 1.05
method | result | size |
risch | \(x +x^{4 \,{\mathrm e}^{8} \left (\ln \relax (x )+\ln \relax (3)\right )} x^{4 x^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 27, normalized size = 1.29 \begin {gather*} x + e^{\left (4 \, x^{2} \log \relax (x) + 4 \, e^{8} \log \relax (3) \log \relax (x) + 4 \, e^{8} \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 27, normalized size = 1.29 \begin {gather*} x+x^{4\,{\mathrm {e}}^8\,\ln \relax (3)}\,x^{4\,x^2}\,{\mathrm {e}}^{4\,{\mathrm {e}}^8\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 26, normalized size = 1.24 \begin {gather*} x + e^{4 x^{2} \log {\relax (x )} + 4 \left (\log {\relax (x )} + \log {\relax (3 )}\right ) e^{8} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________