3.67.10 e2e2xx2(1+e2xx2(32+62x4x2))dx

Optimal. Leaf size=20 e2e2xx2(16+x)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 35, normalized size of antiderivative = 1.75, number of steps used = 1, number of rules used = 1, integrand size = 42, number of rulesintegrand size = 0.024, Rules used = {2288} e2ex2x2(2x2+31x+16)2x+1

Antiderivative was successfully verified.

[In]

Int[E^(2*E^(-2 - x - x^2))*(1 + E^(-2 - x - x^2)*(32 + 62*x - 4*x^2)),x]

[Out]

-((E^(2*E^(-2 - x - x^2))*(16 + 31*x - 2*x^2))/(1 + 2*x))

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=e2e2xx2(16+31x2x2)1+2x

________________________________________________________________________________________

Mathematica [A]  time = 0.60, size = 20, normalized size = 1.00 e2e2xx2(16+x)

Antiderivative was successfully verified.

[In]

Integrate[E^(2*E^(-2 - x - x^2))*(1 + E^(-2 - x - x^2)*(32 + 62*x - 4*x^2)),x]

[Out]

E^(2*E^(-2 - x - x^2))*(-16 + x)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 18, normalized size = 0.90 (x16)e(2e(x2x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^2+62*x+32)*exp(-x^2-x-2)+1)*exp(2*exp(-x^2-x-2)),x, algorithm="fricas")

[Out]

(x - 16)*e^(2*e^(-x^2 - x - 2))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 33, normalized size = 1.65 xe(2e(x2x2))16e(2e(x2x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^2+62*x+32)*exp(-x^2-x-2)+1)*exp(2*exp(-x^2-x-2)),x, algorithm="giac")

[Out]

x*e^(2*e^(-x^2 - x - 2)) - 16*e^(2*e^(-x^2 - x - 2))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 19, normalized size = 0.95




method result size



risch (x16)e2ex2x2 19
norman xe2ex2x216e2ex2x2 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*x^2+62*x+32)*exp(-x^2-x-2)+1)*exp(2*exp(-x^2-x-2)),x,method=_RETURNVERBOSE)

[Out]

(x-16)*exp(2*exp(-x^2-x-2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 (2(2x231x16)e(x2x2)1)e(2e(x2x2))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^2+62*x+32)*exp(-x^2-x-2)+1)*exp(2*exp(-x^2-x-2)),x, algorithm="maxima")

[Out]

-integrate((2*(2*x^2 - 31*x - 16)*e^(-x^2 - x - 2) - 1)*e^(2*e^(-x^2 - x - 2)), x)

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 19, normalized size = 0.95 e2exe2ex2(x16)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2*exp(- x - x^2 - 2))*(exp(- x - x^2 - 2)*(62*x - 4*x^2 + 32) + 1),x)

[Out]

exp(2*exp(-x)*exp(-2)*exp(-x^2))*(x - 16)

________________________________________________________________________________________

sympy [A]  time = 7.42, size = 15, normalized size = 0.75 (x16)e2ex2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x**2+62*x+32)*exp(-x**2-x-2)+1)*exp(2*exp(-x**2-x-2)),x)

[Out]

(x - 16)*exp(2*exp(-x**2 - x - 2))

________________________________________________________________________________________