Optimal. Leaf size=20 \[ e^{2 e^{-2-x-x^2}} (-16+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 35, normalized size of antiderivative = 1.75, number of steps used = 1, number of rules used = 1, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {2288} \begin {gather*} -\frac {e^{2 e^{-x^2-x-2}} \left (-2 x^2+31 x+16\right )}{2 x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{2 e^{-2-x-x^2}} \left (16+31 x-2 x^2\right )}{1+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 20, normalized size = 1.00 \begin {gather*} e^{2 e^{-2-x-x^2}} (-16+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 18, normalized size = 0.90 \begin {gather*} {\left (x - 16\right )} e^{\left (2 \, e^{\left (-x^{2} - x - 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.65 \begin {gather*} x e^{\left (2 \, e^{\left (-x^{2} - x - 2\right )}\right )} - 16 \, e^{\left (2 \, e^{\left (-x^{2} - x - 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 19, normalized size = 0.95
method | result | size |
risch | \(\left (x -16\right ) {\mathrm e}^{2 \,{\mathrm e}^{-x^{2}-x -2}}\) | \(19\) |
norman | \(x \,{\mathrm e}^{2 \,{\mathrm e}^{-x^{2}-x -2}}-16 \,{\mathrm e}^{2 \,{\mathrm e}^{-x^{2}-x -2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int {\left (2 \, {\left (2 \, x^{2} - 31 \, x - 16\right )} e^{\left (-x^{2} - x - 2\right )} - 1\right )} e^{\left (2 \, e^{\left (-x^{2} - x - 2\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 19, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{-x^2}}\,\left (x-16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.42, size = 15, normalized size = 0.75 \begin {gather*} \left (x - 16\right ) e^{2 e^{- x^{2} - x - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________