Optimal. Leaf size=24 \[ e^{7-e^{\frac {x}{x-\log (10+5 x)}}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.50, antiderivative size = 121, normalized size of antiderivative = 5.04, number of steps used = 1, number of rules used = 1, integrand size = 138, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {2288} \begin {gather*} -\frac {e^{7-e^{\frac {x}{x-\log (5 x+10)}}} \left (x^2-\left (x^2+2 x\right ) \log (5 x+10)\right )}{\left (\frac {x \left (1-\frac {1}{x+2}\right )}{(x-\log (5 x+10))^2}-\frac {1}{x-\log (5 x+10)}\right ) \left (x^3+2 x^2-2 \left (x^2+2 x\right ) \log (5 x+10)+(x+2) \log ^2(5 x+10)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{7-e^{\frac {x}{x-\log (10+5 x)}}} \left (x^2-\left (2 x+x^2\right ) \log (10+5 x)\right )}{\left (\frac {x \left (1-\frac {1}{2+x}\right )}{(x-\log (10+5 x))^2}-\frac {1}{x-\log (10+5 x)}\right ) \left (2 x^2+x^3-2 \left (2 x+x^2\right ) \log (10+5 x)+(2+x) \log ^2(10+5 x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 25, normalized size = 1.04 \begin {gather*} e^{7-e^{-\frac {x}{-x+\log (5 (2+x))}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 22, normalized size = 0.92 \begin {gather*} x e^{\left (-e^{\left (\frac {x}{x - \log \left (5 \, x + 10\right )}\right )} + 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{3} + {\left (x + 2\right )} \log \left (5 \, x + 10\right )^{2} + 2 \, x^{2} - {\left (x^{2} - {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )\right )} e^{\left (\frac {x}{x - \log \left (5 \, x + 10\right )}\right )} - 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )\right )} e^{\left (-e^{\left (\frac {x}{x - \log \left (5 \, x + 10\right )}\right )} + 7\right )}}{x^{3} + {\left (x + 2\right )} \log \left (5 \, x + 10\right )^{2} + 2 \, x^{2} - 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 23, normalized size = 0.96
method | result | size |
risch | \(x \,{\mathrm e}^{-{\mathrm e}^{\frac {x}{x -\ln \left (5 x +10\right )}}+7}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{3} + {\left (x + 2\right )} \log \left (5 \, x + 10\right )^{2} + 2 \, x^{2} - {\left (x^{2} - {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )\right )} e^{\left (\frac {x}{x - \log \left (5 \, x + 10\right )}\right )} - 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )\right )} e^{\left (-e^{\left (\frac {x}{x - \log \left (5 \, x + 10\right )}\right )} + 7\right )}}{x^{3} + {\left (x + 2\right )} \log \left (5 \, x + 10\right )^{2} + 2 \, x^{2} - 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (5 \, x + 10\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.73, size = 22, normalized size = 0.92 \begin {gather*} x\,{\mathrm {e}}^{-{\mathrm {e}}^{\frac {x}{x-\ln \left (5\,x+10\right )}}}\,{\mathrm {e}}^7 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________