Optimal. Leaf size=19 \[ e^{5+e^{8 \left (\frac {-5+x}{x}-12 x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 0.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (5+e^{\frac {-40+8 x-96 x^2}{x}}+\frac {-40+8 x-96 x^2}{x}\right ) \left (40-96 x^2\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-96 \exp \left (5+e^{\frac {-40+8 x-96 x^2}{x}}+\frac {-40+8 x-96 x^2}{x}\right )+\frac {40 \exp \left (5+e^{\frac {-40+8 x-96 x^2}{x}}+\frac {-40+8 x-96 x^2}{x}\right )}{x^2}\right ) \, dx\\ &=40 \int \frac {\exp \left (5+e^{\frac {-40+8 x-96 x^2}{x}}+\frac {-40+8 x-96 x^2}{x}\right )}{x^2} \, dx-96 \int \exp \left (5+e^{\frac {-40+8 x-96 x^2}{x}}+\frac {-40+8 x-96 x^2}{x}\right ) \, dx\\ &=40 \int \frac {e^{13+e^{8-\frac {40}{x}-96 x}-\frac {40}{x}-96 x}}{x^2} \, dx-96 \int e^{13+e^{8-\frac {40}{x}-96 x}-\frac {40}{x}-96 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 16, normalized size = 0.84 \begin {gather*} e^{5+e^{8-\frac {40}{x}-96 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 51, normalized size = 2.68 \begin {gather*} e^{\left (-\frac {96 \, x^{2} - x e^{\left (-\frac {8 \, {\left (12 \, x^{2} - x + 5\right )}}{x}\right )} - 13 \, x + 40}{x} + \frac {8 \, {\left (12 \, x^{2} - x + 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {8 \, {\left (12 \, x^{2} - 5\right )} e^{\left (-\frac {8 \, {\left (12 \, x^{2} - x + 5\right )}}{x} + e^{\left (-\frac {8 \, {\left (12 \, x^{2} - x + 5\right )}}{x}\right )} + 5\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 19, normalized size = 1.00
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{\frac {-96 x^{2}+8 x -40}{x}}+5}\) | \(19\) |
risch | \({\mathrm e}^{{\mathrm e}^{-\frac {8 \left (12 x^{2}-x +5\right )}{x}}+5}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.77, size = 14, normalized size = 0.74 \begin {gather*} e^{\left (e^{\left (-96 \, x - \frac {40}{x} + 8\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 17, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-96\,x}\,{\mathrm {e}}^8\,{\mathrm {e}}^{-\frac {40}{x}}}\,{\mathrm {e}}^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 15, normalized size = 0.79 \begin {gather*} e^{e^{\frac {- 96 x^{2} + 8 x - 40}{x}} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________