Optimal. Leaf size=26 \[ 4+\frac {1}{5} \left (11+\frac {e^{-x+x^2}}{x}+x-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 14, 2289, 43} \begin {gather*} \frac {e^{x^2-x}}{5 x}+\frac {x}{5}-\frac {\log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2289
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-x+x^2+e^{-x+x^2} \left (-1-x+2 x^2\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{-x+x^2} (-1-2 x) (1-x)}{x^2}+\frac {-1+x}{x}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{-x+x^2} (-1-2 x) (1-x)}{x^2} \, dx+\frac {1}{5} \int \frac {-1+x}{x} \, dx\\ &=\frac {e^{-x+x^2}}{5 x}+\frac {1}{5} \int \left (1-\frac {1}{x}\right ) \, dx\\ &=\frac {e^{-x+x^2}}{5 x}+\frac {x}{5}-\frac {\log (x)}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 23, normalized size = 0.88 \begin {gather*} \frac {1}{5} \left (\frac {e^{-x+x^2}}{x}+x-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{2} - x \log \relax (x) + e^{\left (x^{2} - x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{2} - x \log \relax (x) + e^{\left (x^{2} - x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.77
method | result | size |
risch | \(\frac {x}{5}-\frac {\ln \relax (x )}{5}+\frac {{\mathrm e}^{x \left (x -1\right )}}{5 x}\) | \(20\) |
norman | \(\frac {\frac {x^{2}}{5}+\frac {{\mathrm e}^{x^{2}-x}}{5}}{x}-\frac {\ln \relax (x )}{5}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{5} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x - \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} + \frac {1}{5} \, x - \frac {1}{5} \, \int \frac {{\left (x + 1\right )} e^{\left (x^{2} - x\right )}}{x^{2}}\,{d x} - \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 22, normalized size = 0.85 \begin {gather*} \frac {{\mathrm {e}}^{x^2-x}+x^2}{5\,x}-\frac {\ln \relax (x)}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.65 \begin {gather*} \frac {x}{5} - \frac {\log {\relax (x )}}{5} + \frac {e^{x^{2} - x}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________