Optimal. Leaf size=23 \[ \frac {e^{1+e^{1+x}-x+\frac {x^4}{9}}}{x^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.23, antiderivative size = 58, normalized size of antiderivative = 2.52, number of steps used = 2, number of rules used = 2, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {12, 2288} \begin {gather*} \frac {e^{\frac {1}{9} \left (x^4-9 x+9 e^{x+1}+9\right )} \left (-4 x^4-9 e^{x+1} x+9 x\right )}{x^5 \left (-4 x^3-9 e^{x+1}+9\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {e^{\frac {1}{9} \left (9+9 e^{1+x}-9 x+x^4\right )} \left (-36-9 x+9 e^{1+x} x+4 x^4\right )}{x^5} \, dx\\ &=\frac {e^{\frac {1}{9} \left (9+9 e^{1+x}-9 x+x^4\right )} \left (9 x-9 e^{1+x} x-4 x^4\right )}{x^5 \left (9-9 e^{1+x}-4 x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 1.00 \begin {gather*} \frac {e^{1+e^{1+x}-x+\frac {x^4}{9}}}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 19, normalized size = 0.83 \begin {gather*} \frac {e^{\left (\frac {1}{9} \, x^{4} - x + e^{\left (x + 1\right )} + 1\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{4} + 9 \, x e^{\left (x + 1\right )} - 9 \, x - 36\right )} e^{\left (\frac {1}{9} \, x^{4} - x + e^{\left (x + 1\right )} + 1\right )}}{9 \, x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 20, normalized size = 0.87
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{x +1}+\frac {x^{4}}{9}-x +1}}{x^{4}}\) | \(20\) |
norman | \(\frac {{\mathrm e}^{{\mathrm e} \,{\mathrm e}^{x}+\frac {x^{4}}{9}-x +1}}{x^{4}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 19, normalized size = 0.83 \begin {gather*} \frac {e^{\left (\frac {1}{9} \, x^{4} - x + e^{\left (x + 1\right )} + 1\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.83, size = 22, normalized size = 0.96 \begin {gather*} \frac {{\mathrm {e}}^{\mathrm {e}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-x}\,\mathrm {e}\,{\mathrm {e}}^{\frac {x^4}{9}}}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.83 \begin {gather*} \frac {e^{\frac {x^{4}}{9} - x + e e^{x} + 1}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________