3.67.24
Optimal. Leaf size=16
________________________________________________________________________________________
Rubi [B] time = 0.76, antiderivative size = 61, normalized size of antiderivative = 3.81,
number of steps used = 28, number of rules used = 14, integrand size = 55, = 0.254, Rules used
= {6688, 6742, 2411, 2353, 2297, 2299, 2178, 2302, 30, 2306, 2309, 2399, 2389, 2390}
Antiderivative was successfully verified.
[In]
Int[(1260*x^2 + 16*x^3 + (-252*x^2 - 3*x^3)*Log[84 + x])/(2100 + 25*x + (-840 - 10*x)*Log[84 + x] + (84 + x)*L
og[84 + x]^2),x]
[Out]
-592704/(5 - Log[84 + x]) + (21168*(84 + x))/(5 - Log[84 + x]) - (252*(84 + x)^2)/(5 - Log[84 + x]) + (84 + x)
^3/(5 - Log[84 + x])
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2297
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
IntegerQ[2*p]
Rule 2299
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[1/(n*c^(1/n)), Subst[Int[E^(x/n)*(a + b*x)^p
, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 2389
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]
Rule 2390
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
&& EqQ[e*f - d*g, 0]
Rule 2399
Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Int[ExpandIn
tegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
0] && IGtQ[q, 0]
Rule 2411
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 13, normalized size = 0.81
Antiderivative was successfully verified.
[In]
Integrate[(1260*x^2 + 16*x^3 + (-252*x^2 - 3*x^3)*Log[84 + x])/(2100 + 25*x + (-840 - 10*x)*Log[84 + x] + (84
+ x)*Log[84 + x]^2),x]
[Out]
-(x^3/(-5 + Log[84 + x]))
________________________________________________________________________________________
fricas [A] time = 0.45, size = 13, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
algorithm="fricas")
[Out]
-x^3/(log(x + 84) - 5)
________________________________________________________________________________________
giac [A] time = 3.51, size = 13, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
algorithm="giac")
[Out]
-x^3/(log(x + 84) - 5)
________________________________________________________________________________________
maple [A] time = 0.08, size = 14, normalized size = 0.88
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-3*x^3-252*x^2)*ln(x+84)+16*x^3+1260*x^2)/((x+84)*ln(x+84)^2+(-10*x-840)*ln(x+84)+25*x+2100),x,method=_R
ETURNVERBOSE)
[Out]
-x^3/(ln(x+84)-5)
________________________________________________________________________________________
maxima [A] time = 0.41, size = 13, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
algorithm="maxima")
[Out]
-x^3/(log(x + 84) - 5)
________________________________________________________________________________________
mupad [B] time = 0.20, size = 13, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((1260*x^2 - log(x + 84)*(252*x^2 + 3*x^3) + 16*x^3)/(25*x - log(x + 84)*(10*x + 840) + log(x + 84)^2*(x +
84) + 2100),x)
[Out]
-x^3/(log(x + 84) - 5)
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x**3-252*x**2)*ln(x+84)+16*x**3+1260*x**2)/((x+84)*ln(x+84)**2+(-10*x-840)*ln(x+84)+25*x+2100),
x)
[Out]
-x**3/(log(x + 84) - 5)
________________________________________________________________________________________