3.67.24 1260x2+16x3+(252x23x3)log(84+x)2100+25x+(84010x)log(84+x)+(84+x)log2(84+x)dx

Optimal. Leaf size=16 log(4)x35+log(84+x)

________________________________________________________________________________________

Rubi [B]  time = 0.76, antiderivative size = 61, normalized size of antiderivative = 3.81, number of steps used = 28, number of rules used = 14, integrand size = 55, number of rulesintegrand size = 0.254, Rules used = {6688, 6742, 2411, 2353, 2297, 2299, 2178, 2302, 30, 2306, 2309, 2399, 2389, 2390} (x+84)35log(x+84)252(x+84)25log(x+84)+21168(x+84)5log(x+84)5927045log(x+84)

Antiderivative was successfully verified.

[In]

Int[(1260*x^2 + 16*x^3 + (-252*x^2 - 3*x^3)*Log[84 + x])/(2100 + 25*x + (-840 - 10*x)*Log[84 + x] + (84 + x)*L
og[84 + x]^2),x]

[Out]

-592704/(5 - Log[84 + x]) + (21168*(84 + x))/(5 - Log[84 + x]) - (252*(84 + x)^2)/(5 - Log[84 + x]) + (84 + x)
^3/(5 - Log[84 + x])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2299

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[1/(n*c^(1/n)), Subst[Int[E^(x/n)*(a + b*x)^p
, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2399

Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Int[ExpandIn
tegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
 0] && IGtQ[q, 0]

Rule 2411

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=x2(4(315+4x)3(84+x)log(84+x))(84+x)(5log(84+x))2dx=(x3(84+x)(5+log(84+x))23x25+log(84+x))dx=(3x25+log(84+x)dx)+x3(84+x)(5+log(84+x))2dx=(3(70565+log(84+x)168(84+x)5+log(84+x)+(84+x)25+log(84+x))dx)+Subst((84+x)3x(5+log(x))2dx,x,84+x)=(3(84+x)25+log(84+x)dx)+50484+x5+log(84+x)dx2116815+log(84+x)dx+Subst((21168(5+log(x))2592704x(5+log(x))2252x(5+log(x))2+x2(5+log(x))2)dx,x,84+x)=(3Subst(x25+log(x)dx,x,84+x))252Subst(x(5+log(x))2dx,x,84+x)+504Subst(x5+log(x)dx,x,84+x)+21168Subst(1(5+log(x))2dx,x,84+x)21168Subst(15+log(x)dx,x,84+x)592704Subst(1x(5+log(x))2dx,x,84+x)+Subst(x2(5+log(x))2dx,x,84+x)=21168(84+x)5log(84+x)252(84+x)25log(84+x)+(84+x)35log(84+x)3Subst(e3x5+xdx,x,log(84+x))+3Subst(x25+log(x)dx,x,84+x)+504Subst(e2x5+xdx,x,log(84+x))504Subst(x5+log(x)dx,x,84+x)21168Subst(ex5+xdx,x,log(84+x))+21168Subst(15+log(x)dx,x,84+x)592704Subst(1x2dx,x,5+log(84+x))=3e15Ei(3(5log(84+x)))+504e10Ei(2(5log(84+x)))21168e5Ei(5+log(84+x))5927045log(84+x)+21168(84+x)5log(84+x)252(84+x)25log(84+x)+(84+x)35log(84+x)+3Subst(e3x5+xdx,x,log(84+x))504Subst(e2x5+xdx,x,log(84+x))+21168Subst(ex5+xdx,x,log(84+x))=5927045log(84+x)+21168(84+x)5log(84+x)252(84+x)25log(84+x)+(84+x)35log(84+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 13, normalized size = 0.81 x35+log(84+x)

Antiderivative was successfully verified.

[In]

Integrate[(1260*x^2 + 16*x^3 + (-252*x^2 - 3*x^3)*Log[84 + x])/(2100 + 25*x + (-840 - 10*x)*Log[84 + x] + (84
+ x)*Log[84 + x]^2),x]

[Out]

-(x^3/(-5 + Log[84 + x]))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 13, normalized size = 0.81 x3log(x+84)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
 algorithm="fricas")

[Out]

-x^3/(log(x + 84) - 5)

________________________________________________________________________________________

giac [A]  time = 3.51, size = 13, normalized size = 0.81 x3log(x+84)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
 algorithm="giac")

[Out]

-x^3/(log(x + 84) - 5)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 14, normalized size = 0.88




method result size



norman x3ln(x+84)5 14
risch x3ln(x+84)5 14



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*x^3-252*x^2)*ln(x+84)+16*x^3+1260*x^2)/((x+84)*ln(x+84)^2+(-10*x-840)*ln(x+84)+25*x+2100),x,method=_R
ETURNVERBOSE)

[Out]

-x^3/(ln(x+84)-5)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 13, normalized size = 0.81 x3log(x+84)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^3-252*x^2)*log(x+84)+16*x^3+1260*x^2)/((x+84)*log(x+84)^2+(-10*x-840)*log(x+84)+25*x+2100),x,
 algorithm="maxima")

[Out]

-x^3/(log(x + 84) - 5)

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 13, normalized size = 0.81 x3ln(x+84)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1260*x^2 - log(x + 84)*(252*x^2 + 3*x^3) + 16*x^3)/(25*x - log(x + 84)*(10*x + 840) + log(x + 84)^2*(x +
84) + 2100),x)

[Out]

-x^3/(log(x + 84) - 5)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 10, normalized size = 0.62 x3log(x+84)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x**3-252*x**2)*ln(x+84)+16*x**3+1260*x**2)/((x+84)*ln(x+84)**2+(-10*x-840)*ln(x+84)+25*x+2100),
x)

[Out]

-x**3/(log(x + 84) - 5)

________________________________________________________________________________________