Optimal. Leaf size=29 \[ \frac {16}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25}{x}+x^2\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 20.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-1600 x^2-64 x^5\right )+e^{5 e^{-x}} \left (e^x \left (3200-256 x^3\right )+\left (16000 x+640 x^4\right ) \log \left (\frac {25+x^3}{x}\right )\right )}{e^x \left (25 x^7+x^{10}\right )+e^{5 e^{-x}+x} \left (300 x^5+12 x^8\right ) \log \left (\frac {25+x^3}{x}\right )+e^{10 e^{-x}+x} \left (1200 x^3+48 x^6\right ) \log ^2\left (\frac {25+x^3}{x}\right )+e^{15 e^{-x}+x} \left (1600 x+64 x^4\right ) \log ^3\left (\frac {25+x^3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-64 e^x \left (x^2 \left (25+x^3\right )+e^{5 e^{-x}} \left (-50+4 x^3\right )\right )+640 e^{5 e^{-x}} x \left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right )\right )}{x \left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=\int \left (-\frac {64 \left (-50 e^{5 e^{-x}}+25 x^2+4 e^{5 e^{-x}} x^3+x^5\right )}{x \left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}+\frac {640 e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}\right ) \, dx\\ &=-\left (64 \int \frac {-50 e^{5 e^{-x}}+25 x^2+4 e^{5 e^{-x}} x^3+x^5}{x \left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\right )+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=-\left (64 \int \left (\frac {-25+2 x^3}{2 x \left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}+\frac {x \left (25-2 x^3+50 \log \left (\frac {25+x^3}{x}\right )+2 x^3 \log \left (\frac {25+x^3}{x}\right )\right )}{2 \left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}\right ) \, dx\right )+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=-\left (32 \int \frac {-25+2 x^3}{x \left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2} \, dx\right )-32 \int \frac {x \left (25-2 x^3+50 \log \left (\frac {25+x^3}{x}\right )+2 x^3 \log \left (\frac {25+x^3}{x}\right )\right )}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=-\left (32 \int \frac {x \left (25-2 x^3+2 \left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right )\right )}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\right )-32 \int \left (-\frac {1}{x \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}+\frac {3 x^2}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}\right ) \, dx+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=32 \int \frac {1}{x \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2} \, dx-32 \int \left (\frac {50 x}{\left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}+\frac {2 x^4}{\left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}+\frac {25 x}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}-\frac {2 x^4}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3}\right ) \, dx-96 \int \frac {x^2}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2} \, dx+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=32 \int \frac {1}{x \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2} \, dx-64 \int \frac {x^4}{\left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx+64 \int \frac {x^4}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx-96 \int \left (\frac {1}{3 \left ((-5)^{2/3}+x\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}+\frac {1}{3 \left (5^{2/3}+x\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}+\frac {1}{3 \left (-\sqrt [3]{-1} 5^{2/3}+x\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2}\right ) \, dx+640 \int \frac {e^{5 e^{-x}-x} \log \left (\frac {25+x^3}{x}\right )}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx-800 \int \frac {x}{\left (25+x^3\right ) \log \left (\frac {25+x^3}{x}\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx-1600 \int \frac {x}{\left (25+x^3\right ) \left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 1.00 \begin {gather*} \frac {16}{\left (x^2+4 e^{5 e^{-x}} \log \left (\frac {25+x^3}{x}\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.48, size = 73, normalized size = 2.52 \begin {gather*} \frac {16 \, e^{\left (2 \, x\right )}}{x^{4} e^{\left (2 \, x\right )} + 8 \, x^{2} e^{\left ({\left (x e^{x} + 5\right )} e^{\left (-x\right )} + x\right )} \log \left (\frac {x^{3} + 25}{x}\right ) + 16 \, e^{\left (2 \, {\left (x e^{x} + 5\right )} e^{\left (-x\right )}\right )} \log \left (\frac {x^{3} + 25}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (640 x^{4}+16000 x \right ) \ln \left (\frac {x^{3}+25}{x}\right )+\left (-256 x^{3}+3200\right ) {\mathrm e}^{x}\right ) {\mathrm e}^{5 \,{\mathrm e}^{-x}}+\left (-64 x^{5}-1600 x^{2}\right ) {\mathrm e}^{x}}{\left (64 x^{4}+1600 x \right ) {\mathrm e}^{x} \ln \left (\frac {x^{3}+25}{x}\right )^{3} {\mathrm e}^{15 \,{\mathrm e}^{-x}}+\left (48 x^{6}+1200 x^{3}\right ) {\mathrm e}^{x} \ln \left (\frac {x^{3}+25}{x}\right )^{2} {\mathrm e}^{10 \,{\mathrm e}^{-x}}+\left (12 x^{8}+300 x^{5}\right ) {\mathrm e}^{x} \ln \left (\frac {x^{3}+25}{x}\right ) {\mathrm e}^{5 \,{\mathrm e}^{-x}}+\left (x^{10}+25 x^{7}\right ) {\mathrm e}^{x}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.84, size = 67, normalized size = 2.31 \begin {gather*} \frac {16}{x^{4} + 16 \, {\left (\log \left (x^{3} + 25\right )^{2} - 2 \, \log \left (x^{3} + 25\right ) \log \relax (x) + \log \relax (x)^{2}\right )} e^{\left (10 \, e^{\left (-x\right )}\right )} + 8 \, {\left (x^{2} \log \left (x^{3} + 25\right ) - x^{2} \log \relax (x)\right )} e^{\left (5 \, e^{\left (-x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.78, size = 51, normalized size = 1.76 \begin {gather*} \frac {16}{16\,{\mathrm {e}}^{10\,{\mathrm {e}}^{-x}}\,{\ln \left (\frac {x^3+25}{x}\right )}^2+x^4+8\,x^2\,{\mathrm {e}}^{5\,{\mathrm {e}}^{-x}}\,\ln \left (\frac {x^3+25}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.71, size = 42, normalized size = 1.45 \begin {gather*} \frac {16}{x^{4} + 8 x^{2} e^{5 e^{- x}} \log {\left (\frac {x^{3} + 25}{x} \right )} + 16 e^{10 e^{- x}} \log {\left (\frac {x^{3} + 25}{x} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________