Optimal. Leaf size=23 \[ \frac {x-\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 3.65, antiderivative size = 20, normalized size of antiderivative = 0.87, number of steps used = 28, number of rules used = 5, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6688, 14, 6742, 43, 2551} \begin {gather*} -\frac {\log \left (\left (e^x+7\right )^2 x^2+x+3\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {x \left (1+2 \left (7+e^x\right )^2 x+2 e^x \left (7+e^x\right ) x^2\right )}{3+x+\left (7+e^x\right )^2 x^2}+\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x^2} \, dx\\ &=\int \left (\frac {6+7 x+2 x^2+98 x^3+14 e^x x^3}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}+\frac {-2-2 x+\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x^2}\right ) \, dx\\ &=\int \frac {6+7 x+2 x^2+98 x^3+14 e^x x^3}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx+\int \frac {-2-2 x+\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x^2} \, dx\\ &=\int \frac {6+7 x+2 x^2+14 \left (7+e^x\right ) x^3}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+\int \left (-\frac {2 (1+x)}{x^2}+\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {1+x}{x^2} \, dx\right )+\int \left (\frac {2}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}+\frac {6}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}+\frac {7}{x \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}+\frac {98 x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}+\frac {14 e^x x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}\right ) \, dx+\int \frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x^2} \, dx\\ &=-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}-2 \int \left (\frac {1}{x^2}+\frac {1}{x}\right ) \, dx+2 \int \frac {1}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+6 \int \frac {1}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx+14 \int \frac {e^x x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+98 \int \frac {x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+\int \frac {1+2 \left (7+e^x\right )^2 x+2 e^x \left (7+e^x\right ) x^2}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx\\ &=\frac {2}{x}-2 \log (x)-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}+2 \int \frac {1}{3+x+\left (7+e^x\right )^2 x^2} \, dx+6 \int \frac {1}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+14 \int \frac {e^x x}{3+x+\left (7+e^x\right )^2 x^2} \, dx+98 \int \frac {x}{3+x+\left (7+e^x\right )^2 x^2} \, dx+\int \left (\frac {2 (1+x)}{x^2}-\frac {6+7 x+2 x^2+98 x^3+14 e^x x^3}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}\right ) \, dx\\ &=\frac {2}{x}-2 \log (x)-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}+2 \int \frac {1+x}{x^2} \, dx+2 \int \frac {1}{3+x+\left (7+e^x\right )^2 x^2} \, dx+6 \int \frac {1}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+14 \int \frac {e^x x}{3+x+\left (7+e^x\right )^2 x^2} \, dx+98 \int \frac {x}{3+x+\left (7+e^x\right )^2 x^2} \, dx-\int \frac {6+7 x+2 x^2+98 x^3+14 e^x x^3}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx\\ &=\frac {2}{x}-2 \log (x)-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}+2 \int \left (\frac {1}{x^2}+\frac {1}{x}\right ) \, dx+2 \int \frac {1}{3+x+\left (7+e^x\right )^2 x^2} \, dx+6 \int \frac {1}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+14 \int \frac {e^x x}{3+x+\left (7+e^x\right )^2 x^2} \, dx+98 \int \frac {x}{3+x+\left (7+e^x\right )^2 x^2} \, dx-\int \frac {6+7 x+2 x^2+14 \left (7+e^x\right ) x^3}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx\\ &=-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}+2 \int \frac {1}{3+x+\left (7+e^x\right )^2 x^2} \, dx+6 \int \frac {1}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx+14 \int \frac {e^x x}{3+x+\left (7+e^x\right )^2 x^2} \, dx+98 \int \frac {x}{3+x+\left (7+e^x\right )^2 x^2} \, dx-\int \left (\frac {2}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}+\frac {6}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}+\frac {7}{x \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )}+\frac {98 x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}+\frac {14 e^x x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2}\right ) \, dx\\ &=-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}-2 \int \frac {1}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+2 \int \frac {1}{3+x+\left (7+e^x\right )^2 x^2} \, dx-6 \int \frac {1}{x^2 \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx+6 \int \frac {1}{x^2 \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx-7 \int \frac {1}{x \left (3+x+49 x^2+14 e^x x^2+e^{2 x} x^2\right )} \, dx+7 \int \frac {1}{x \left (3+x+\left (7+e^x\right )^2 x^2\right )} \, dx-14 \int \frac {e^x x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+14 \int \frac {e^x x}{3+x+\left (7+e^x\right )^2 x^2} \, dx-98 \int \frac {x}{3+x+49 x^2+14 e^x x^2+e^{2 x} x^2} \, dx+98 \int \frac {x}{3+x+\left (7+e^x\right )^2 x^2} \, dx\\ &=-\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 20, normalized size = 0.87 \begin {gather*} -\frac {\log \left (3+x+\left (7+e^x\right )^2 x^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 29, normalized size = 1.26 \begin {gather*} -\frac {\log \left (x^{2} e^{\left (2 \, x\right )} + 14 \, x^{2} e^{x} + 49 \, x^{2} + x + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 29, normalized size = 1.26 \begin {gather*} -\frac {\log \left (x^{2} e^{\left (2 \, x\right )} + 14 \, x^{2} e^{x} + 49 \, x^{2} + x + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.30
method | result | size |
risch | \(-\frac {\ln \left ({\mathrm e}^{2 x} x^{2}+14 \,{\mathrm e}^{x} x^{2}+49 x^{2}+x +3\right )}{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 29, normalized size = 1.26 \begin {gather*} -\frac {\log \left (x^{2} e^{\left (2 \, x\right )} + 14 \, x^{2} e^{x} + 49 \, x^{2} + x + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 29, normalized size = 1.26 \begin {gather*} -\frac {\ln \left (x+14\,x^2\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}+49\,x^2+3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 29, normalized size = 1.26 \begin {gather*} - \frac {\log {\left (x^{2} e^{2 x} + 14 x^{2} e^{x} + 49 x^{2} + x + 3 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________